YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy

    Source: Journal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 005
    Author:
    Jae-Il Sim
    ,
    Keun-Hyeok Yang
    ,
    Eun-Taik Lee
    ,
    Seong-Tae Yi
    DOI: 10.1061/(ASCE)MT.1943-5533.0000884
    Publisher: American Society of Civil Engineers
    Abstract: To evaluate the effects of beam specimen depth and aggregate size on the fracture energy of lightweight concrete (LWC), different beam specimens designated into 32 notations were tested under three-point bending. In each of the all-lightweight concrete and sand-lightweight concrete groups, the maximum aggregate size varied between 4 and 19 mm; the beam depth ranged from 150 to 600 mm in each ready-mixed concrete batch with the same mix proportions. Based on experimental observations and verification of prior empirical models, simple closed-form equations were proposed to generalize the influence of the concrete unit weight on the size effect for the fracture energy of concrete. Test results clearly showed that when the maximum aggregate size is larger than 8 mm, the aggregate size in LWC has an insignificant effect on fracture parameters such as the fracture energy, crack opening mouth displacement, and characteristic length due to crack propagation through the lightweight aggregate particles. The fracture energy of LWC was lower than that of normal-weight concrete, indicating that the size-dependence of the fracture energy increases with decreasing concrete unit weight. A comparison between the predicted and experimental fracture energies revealed that the reliability of existing models significantly depends on the concrete type and ligament depth of the beam specimen, whereas the proposed model generally gives better agreement with the test data; it consistently predicts the trend of the size effect, regardless of the concrete unit weight.
    • Download: (29.95Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67283
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJae-Il Sim
    contributor authorKeun-Hyeok Yang
    contributor authorEun-Taik Lee
    contributor authorSeong-Tae Yi
    date accessioned2017-05-08T21:57:00Z
    date available2017-05-08T21:57:00Z
    date copyrightMay 2014
    date issued2014
    identifier other%28asce%29mt%2E1943-5533%2E0000926.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67283
    description abstractTo evaluate the effects of beam specimen depth and aggregate size on the fracture energy of lightweight concrete (LWC), different beam specimens designated into 32 notations were tested under three-point bending. In each of the all-lightweight concrete and sand-lightweight concrete groups, the maximum aggregate size varied between 4 and 19 mm; the beam depth ranged from 150 to 600 mm in each ready-mixed concrete batch with the same mix proportions. Based on experimental observations and verification of prior empirical models, simple closed-form equations were proposed to generalize the influence of the concrete unit weight on the size effect for the fracture energy of concrete. Test results clearly showed that when the maximum aggregate size is larger than 8 mm, the aggregate size in LWC has an insignificant effect on fracture parameters such as the fracture energy, crack opening mouth displacement, and characteristic length due to crack propagation through the lightweight aggregate particles. The fracture energy of LWC was lower than that of normal-weight concrete, indicating that the size-dependence of the fracture energy increases with decreasing concrete unit weight. A comparison between the predicted and experimental fracture energies revealed that the reliability of existing models significantly depends on the concrete type and ligament depth of the beam specimen, whereas the proposed model generally gives better agreement with the test data; it consistently predicts the trend of the size effect, regardless of the concrete unit weight.
    publisherAmerican Society of Civil Engineers
    titleEffects of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy
    typeJournal Paper
    journal volume26
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000884
    treeJournal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian