YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implementation of a Triaxial Dynamic Modulus Master Curve in Finite-Element Modeling of Asphalt Pavements

    Source: Journal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 003
    Author:
    Yanqing Zhao
    ,
    Long Bai
    ,
    Hui Liu
    DOI: 10.1061/(ASCE)MT.1943-5533.0000823
    Publisher: American Society of Civil Engineers
    Abstract: The newly developed Mechanistic-Empirical Pavement Design Guide (MEPDG) uses the dynamic modulus master curve to account for the temperature and frequency dependent behavior of asphalt concrete. However, the master curve used in the MEPDG is constructed using dynamic moduli measured in uniaxial testing and the effect of confinement on the mechanical properties of asphalt concrete is disregarded. This study implemented a model of triaxial dynamic modulus master curve in finite-element (FE) modeling of asphalt pavements. The dynamic modulus distribution in asphalt layers due to the contribution of confinement was evaluated for various scenarios. The results show that when the effect of confinement is considered the dynamic modulus can be more than two times the uniaxial value at the same temperature and frequency. The effect of confinement on dynamic modulus is more evident at high temperatures and low frequencies. Various pavement responses were computed using the developed FE model and compared to those obtained using the corresponding uniaxial dynamic modulus. For the pavements analyzed in this study, the confinement has the most pronounced effect on the permanent deformation of asphalt layers. The compressive strain in asphalt layers can be reduced to about half of the value obtained using the uniaxial dynamic modulus.
    • Download: (6.724Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implementation of a Triaxial Dynamic Modulus Master Curve in Finite-Element Modeling of Asphalt Pavements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67224
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorYanqing Zhao
    contributor authorLong Bai
    contributor authorHui Liu
    date accessioned2017-05-08T21:56:41Z
    date available2017-05-08T21:56:41Z
    date copyrightMarch 2014
    date issued2014
    identifier other%28asce%29mt%2E1943-5533%2E0000864.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67224
    description abstractThe newly developed Mechanistic-Empirical Pavement Design Guide (MEPDG) uses the dynamic modulus master curve to account for the temperature and frequency dependent behavior of asphalt concrete. However, the master curve used in the MEPDG is constructed using dynamic moduli measured in uniaxial testing and the effect of confinement on the mechanical properties of asphalt concrete is disregarded. This study implemented a model of triaxial dynamic modulus master curve in finite-element (FE) modeling of asphalt pavements. The dynamic modulus distribution in asphalt layers due to the contribution of confinement was evaluated for various scenarios. The results show that when the effect of confinement is considered the dynamic modulus can be more than two times the uniaxial value at the same temperature and frequency. The effect of confinement on dynamic modulus is more evident at high temperatures and low frequencies. Various pavement responses were computed using the developed FE model and compared to those obtained using the corresponding uniaxial dynamic modulus. For the pavements analyzed in this study, the confinement has the most pronounced effect on the permanent deformation of asphalt layers. The compressive strain in asphalt layers can be reduced to about half of the value obtained using the uniaxial dynamic modulus.
    publisherAmerican Society of Civil Engineers
    titleImplementation of a Triaxial Dynamic Modulus Master Curve in Finite-Element Modeling of Asphalt Pavements
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000823
    treeJournal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian