YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic Fiber Ropes of Ultrahigh-Extension Capacity in Strengthening of Concrete through Confinement

    Source: Journal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 001
    Author:
    Theodoros C. Rousakis
    DOI: 10.1061/(ASCE)MT.1943-5533.0000796
    Publisher: American Society of Civil Engineers
    Abstract: This paper deals with the experimental investigation of the use of low modulus vinylon and polypropylene fiber ropes as external confining reinforcements on standard concrete cylinders. Vinylon has a higher modulus of elasticity than polypropylene, whereas the latter has ultrahigh tensile deformation at failure. Ropes require no use of impregnating resins or mortars. The research examines low concrete strength columns in three levels of rope confinement, subjected to monotonic or cyclic loading. The effectiveness of the rope composite reinforcements is assessed by the resulting axial stress versus axial and lateral strain behavior. The elaboration also includes the stress and strain values both at 3% axial strain and at ultimate strain. Suitable fiber rope confinement may improve plain concrete strength by a factor higher than 6.6 and provide an axial strain ductility higher than 40. No column wrapped by polypropylene fiber ropes reaches fiber fracture. The performance of the retrofitted columns is discussed with respect to the fiber-reinforced polymer sheet confinement.
    • Download: (2.904Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic Fiber Ropes of Ultrahigh-Extension Capacity in Strengthening of Concrete through Confinement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67199
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTheodoros C. Rousakis
    date accessioned2017-05-08T21:56:31Z
    date available2017-05-08T21:56:31Z
    date copyrightJanuary 2014
    date issued2014
    identifier other%28asce%29mt%2E1943-5533%2E0000841.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67199
    description abstractThis paper deals with the experimental investigation of the use of low modulus vinylon and polypropylene fiber ropes as external confining reinforcements on standard concrete cylinders. Vinylon has a higher modulus of elasticity than polypropylene, whereas the latter has ultrahigh tensile deformation at failure. Ropes require no use of impregnating resins or mortars. The research examines low concrete strength columns in three levels of rope confinement, subjected to monotonic or cyclic loading. The effectiveness of the rope composite reinforcements is assessed by the resulting axial stress versus axial and lateral strain behavior. The elaboration also includes the stress and strain values both at 3% axial strain and at ultimate strain. Suitable fiber rope confinement may improve plain concrete strength by a factor higher than 6.6 and provide an axial strain ductility higher than 40. No column wrapped by polypropylene fiber ropes reaches fiber fracture. The performance of the retrofitted columns is discussed with respect to the fiber-reinforced polymer sheet confinement.
    publisherAmerican Society of Civil Engineers
    titleElastic Fiber Ropes of Ultrahigh-Extension Capacity in Strengthening of Concrete through Confinement
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000796
    treeJournal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian