YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Internal Frost Damage in Concrete with Thermodynamic Analysis, Microdamage Modeling, and Time-Domain Reflectometry Sensor Measurements

    Source: Journal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 009
    Author:
    Qingli Dai
    ,
    Kenny Ng
    ,
    Yan Liu
    ,
    Xiong Yu
    DOI: 10.1061/(ASCE)MT.1943-5533.0000761
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates the internal-frost damage due to ice-crystallization pressure in the concrete pore system. The methodology integrates thermodynamic analysis and a microdamage model as well as a unique time-domain reflectometry (TDR) sensor. The crystallization pressure in the microscale pore system of concrete at subcooling temperatures was calculated based upon thermodynamic analysis. An extended finite-element method (XFEM) was applied to simulate the fracture development induced by internal frost, with the estimated internal crystallization pressure as the input. The XFEM fracture simulation was conducted on a digitized concrete sample obtained with imaging processing and ellipse-fitting techniques. The simulated crack development under the crystallization pressure was found to match the observed fracture patterns of the tested single-edge notched specimen. The XFEM simulation results were verified by the open-mode fracture behavior in both middle-notched single-edge notched beam bending test and freezing-damage tests. Furthermore, the crystallization-pressure analysis and freezing-damage simulation were conducted to demonstrate the freezing-damage process using cement samples with idealized pore structures. To provide direct estimation of the crystallization pressure, an innovative TDR tube sensor was developed to nondestructively monitor the extent of freezing in concrete specimens. The results show that this new sensor provides noninvasive measurement of freezing degree, which can be used to directly estimate the internal crystallization pressure for XFEM analyses. A volume-based damage criterion was also proposed based on the new TDR sensor. This work established a framework to integrate sensor and simulations to holistically predict the internal-frost damage process in concrete specimens.
    • Download: (15.69Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Internal Frost Damage in Concrete with Thermodynamic Analysis, Microdamage Modeling, and Time-Domain Reflectometry Sensor Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67160
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorQingli Dai
    contributor authorKenny Ng
    contributor authorYan Liu
    contributor authorXiong Yu
    date accessioned2017-05-08T21:56:23Z
    date available2017-05-08T21:56:23Z
    date copyrightSeptember 2013
    date issued2013
    identifier other%28asce%29mt%2E1943-5533%2E0000797.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67160
    description abstractThis study investigates the internal-frost damage due to ice-crystallization pressure in the concrete pore system. The methodology integrates thermodynamic analysis and a microdamage model as well as a unique time-domain reflectometry (TDR) sensor. The crystallization pressure in the microscale pore system of concrete at subcooling temperatures was calculated based upon thermodynamic analysis. An extended finite-element method (XFEM) was applied to simulate the fracture development induced by internal frost, with the estimated internal crystallization pressure as the input. The XFEM fracture simulation was conducted on a digitized concrete sample obtained with imaging processing and ellipse-fitting techniques. The simulated crack development under the crystallization pressure was found to match the observed fracture patterns of the tested single-edge notched specimen. The XFEM simulation results were verified by the open-mode fracture behavior in both middle-notched single-edge notched beam bending test and freezing-damage tests. Furthermore, the crystallization-pressure analysis and freezing-damage simulation were conducted to demonstrate the freezing-damage process using cement samples with idealized pore structures. To provide direct estimation of the crystallization pressure, an innovative TDR tube sensor was developed to nondestructively monitor the extent of freezing in concrete specimens. The results show that this new sensor provides noninvasive measurement of freezing degree, which can be used to directly estimate the internal crystallization pressure for XFEM analyses. A volume-based damage criterion was also proposed based on the new TDR sensor. This work established a framework to integrate sensor and simulations to holistically predict the internal-frost damage process in concrete specimens.
    publisherAmerican Society of Civil Engineers
    titleInvestigation of Internal Frost Damage in Concrete with Thermodynamic Analysis, Microdamage Modeling, and Time-Domain Reflectometry Sensor Measurements
    typeJournal Paper
    journal volume25
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000761
    treeJournal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian