YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica

    Source: Journal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 011
    Author:
    Hui Yao
    ,
    Zhanping You
    ,
    Liang Li
    ,
    Chee Huei Lee
    ,
    David Wingard
    ,
    Yoke Khin Yap
    ,
    Xianming Shi
    ,
    Shu Wei Goh
    DOI: 10.1061/(ASCE)MT.1943-5533.0000690
    Publisher: American Society of Civil Engineers
    Abstract: The objective of this study is to evaluate the rheological properties and chemical bonding of nano-modified asphalt binders blended with nanosilica. In this study, the nanosilica was added to the control asphalt at contents of 4% and 6% based on the weight of asphalt binders. Superpave binder and mixture tests were utilized in this study to estimate the characteristics of the nano-modifed asphalt binder and mixture. The rotational viscosity (RV), dynamic shear rheometer (DSR), bending beam rhometer (BBR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), asphalt pavement analyzer (APA), dynamic modulus (DM) and flow number (FN) tests were used to analyze rheological properties and chemical bonding changes of the nano-modified asphalt binder and the performance of the nano-modified asphalt mixture. In addition, the performance of nano-modified asphalt after rolling thin-film oven (RTFO) short-term and pressure-aging vessel (PAV) long-term aging was assessed as well. The dissipated work per load cycle for the asphalt binder was used to evaluate the rheological properties of the nano-modified asphalt binder. Based on the binder test results, it was found that the additional nanosilica in the control asphalt binder slightly decreased the viscosity of the control asphalt binder, maintained low dissipated work per load cycle, held a similar low-temperature performance to the control asphalt, and had a positive effect on antioxidation. From the mixture test results, the dynamic modulus and flow number of nano-modified asphalt mixtures improved, and the rutting susceptibility of nano-modified asphalt mixtures was reduced compared to the control asphalt mixture. In general, the findings from this study show that the antiaging property and rutting and fatigue cracking performance of nanosilica modified asphalt binders are enhanced, and the addition of nanosilica in the control asphalt mixture significantly improves the dynamic modulus, flow number, and rutting resistance of asphalt mixtures.
    • Download: (2.789Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67084
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHui Yao
    contributor authorZhanping You
    contributor authorLiang Li
    contributor authorChee Huei Lee
    contributor authorDavid Wingard
    contributor authorYoke Khin Yap
    contributor authorXianming Shi
    contributor authorShu Wei Goh
    date accessioned2017-05-08T21:56:16Z
    date available2017-05-08T21:56:16Z
    date copyrightNovember 2013
    date issued2013
    identifier other%28asce%29mt%2E1943-5533%2E0000725.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67084
    description abstractThe objective of this study is to evaluate the rheological properties and chemical bonding of nano-modified asphalt binders blended with nanosilica. In this study, the nanosilica was added to the control asphalt at contents of 4% and 6% based on the weight of asphalt binders. Superpave binder and mixture tests were utilized in this study to estimate the characteristics of the nano-modifed asphalt binder and mixture. The rotational viscosity (RV), dynamic shear rheometer (DSR), bending beam rhometer (BBR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), asphalt pavement analyzer (APA), dynamic modulus (DM) and flow number (FN) tests were used to analyze rheological properties and chemical bonding changes of the nano-modified asphalt binder and the performance of the nano-modified asphalt mixture. In addition, the performance of nano-modified asphalt after rolling thin-film oven (RTFO) short-term and pressure-aging vessel (PAV) long-term aging was assessed as well. The dissipated work per load cycle for the asphalt binder was used to evaluate the rheological properties of the nano-modified asphalt binder. Based on the binder test results, it was found that the additional nanosilica in the control asphalt binder slightly decreased the viscosity of the control asphalt binder, maintained low dissipated work per load cycle, held a similar low-temperature performance to the control asphalt, and had a positive effect on antioxidation. From the mixture test results, the dynamic modulus and flow number of nano-modified asphalt mixtures improved, and the rutting susceptibility of nano-modified asphalt mixtures was reduced compared to the control asphalt mixture. In general, the findings from this study show that the antiaging property and rutting and fatigue cracking performance of nanosilica modified asphalt binders are enhanced, and the addition of nanosilica in the control asphalt mixture significantly improves the dynamic modulus, flow number, and rutting resistance of asphalt mixtures.
    publisherAmerican Society of Civil Engineers
    titleRheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica
    typeJournal Paper
    journal volume25
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000690
    treeJournal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian