YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Micromechanical Model for Predicting Coefficient of Thermal Expansion of Concrete

    Source: Journal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 009
    Author:
    Changjun Zhou
    ,
    Baoshan Huang
    ,
    Xiang Shu
    DOI: 10.1061/(ASCE)MT.1943-5533.0000663
    Publisher: American Society of Civil Engineers
    Abstract: Thermal cracking of Portland cement concrete (PCC) decreases rideability and accelerates deterioration of concrete pavements. Coefficient of thermal expansion (CTE) is one of the most important parameters to evaluate the thermal sensitivity of PCC. The AASHTO mechanistic-empirical pavement design guide (MEPDG) requires CTE as a basic input for concrete pavement design, which has increased interest in studies related to concrete CTE in the United States. Several test methods have been developed and used to determine concrete CTE. Nevertheless, concrete CTE testing is time-consuming. Most of the currently available concrete CTE prediction models are empirical and do not reflect the microstructure of PCC. This paper developed a micromechanical model based on thermal mechanical analysis to predict concrete CTE. Concrete CTE data found in the literature validated the applicability of the developed model. Factors affecting concrete CTE were examined using the proposed model. The model has the potential to estimate concrete CTE for concrete pavement design and to help select appropriate raw materials for PCC to achieve low CTE.
    • Download: (1.477Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Micromechanical Model for Predicting Coefficient of Thermal Expansion of Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67054
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorChangjun Zhou
    contributor authorBaoshan Huang
    contributor authorXiang Shu
    date accessioned2017-05-08T21:56:14Z
    date available2017-05-08T21:56:14Z
    date copyrightSeptember 2013
    date issued2013
    identifier other%28asce%29mt%2E1943-5533%2E0000698.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67054
    description abstractThermal cracking of Portland cement concrete (PCC) decreases rideability and accelerates deterioration of concrete pavements. Coefficient of thermal expansion (CTE) is one of the most important parameters to evaluate the thermal sensitivity of PCC. The AASHTO mechanistic-empirical pavement design guide (MEPDG) requires CTE as a basic input for concrete pavement design, which has increased interest in studies related to concrete CTE in the United States. Several test methods have been developed and used to determine concrete CTE. Nevertheless, concrete CTE testing is time-consuming. Most of the currently available concrete CTE prediction models are empirical and do not reflect the microstructure of PCC. This paper developed a micromechanical model based on thermal mechanical analysis to predict concrete CTE. Concrete CTE data found in the literature validated the applicability of the developed model. Factors affecting concrete CTE were examined using the proposed model. The model has the potential to estimate concrete CTE for concrete pavement design and to help select appropriate raw materials for PCC to achieve low CTE.
    publisherAmerican Society of Civil Engineers
    titleMicromechanical Model for Predicting Coefficient of Thermal Expansion of Concrete
    typeJournal Paper
    journal volume25
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000663
    treeJournal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian