YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elevated Temperature Material Degradation of Cold-Formed Steels under Steady- and Transient-State Conditions

    Source: Journal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 008
    Author:
    Jihong Ye
    ,
    Wei Chen
    DOI: 10.1061/(ASCE)MT.1943-5533.0000640
    Publisher: American Society of Civil Engineers
    Abstract: Material properties at elevated temperatures are important factors in the fire safety design and numerical analysis of cold-formed steel structures. Most of the previous research on material properties at high temperatures has adopted the steady-state test method. However, the transient-state test method is more realistic for actual fire conditions. This paper presents a detailed experimental investigation of Q345 cold-formed steel with a nominal yield strength of 345 MPa and a thickness of 1.5 mm under transient- and steady-state conditions. Both the flat and corner parts of Q345 cold-formed steel sections are considered. The results showed that the steady-state method was not equivalent to the transient-state method for Q345 steel; in addition, current standards provided overestimations for the mechanical properties of Q345 steel under elevated temperatures. An empirical equation was proposed to estimate the reduction factors for the yield and ultimate strength and the elastic modulus of Q345 steel under elevated temperatures, where the essential parameters were determined through fitting. The stress-strain relationship of Q345 steel under elevated temperatures was further developed based on the Ramberg-Osgood model, which compared well with the experimental results.
    • Download: (898.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elevated Temperature Material Degradation of Cold-Formed Steels under Steady- and Transient-State Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67029
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJihong Ye
    contributor authorWei Chen
    date accessioned2017-05-08T21:56:12Z
    date available2017-05-08T21:56:12Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29mt%2E1943-5533%2E0000675.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67029
    description abstractMaterial properties at elevated temperatures are important factors in the fire safety design and numerical analysis of cold-formed steel structures. Most of the previous research on material properties at high temperatures has adopted the steady-state test method. However, the transient-state test method is more realistic for actual fire conditions. This paper presents a detailed experimental investigation of Q345 cold-formed steel with a nominal yield strength of 345 MPa and a thickness of 1.5 mm under transient- and steady-state conditions. Both the flat and corner parts of Q345 cold-formed steel sections are considered. The results showed that the steady-state method was not equivalent to the transient-state method for Q345 steel; in addition, current standards provided overestimations for the mechanical properties of Q345 steel under elevated temperatures. An empirical equation was proposed to estimate the reduction factors for the yield and ultimate strength and the elastic modulus of Q345 steel under elevated temperatures, where the essential parameters were determined through fitting. The stress-strain relationship of Q345 steel under elevated temperatures was further developed based on the Ramberg-Osgood model, which compared well with the experimental results.
    publisherAmerican Society of Civil Engineers
    titleElevated Temperature Material Degradation of Cold-Formed Steels under Steady- and Transient-State Conditions
    typeJournal Paper
    journal volume25
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000640
    treeJournal of Materials in Civil Engineering:;2013:;Volume ( 025 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian