YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Evaluation of Warm-Mix Asphalt Technologies

    Source: Journal of Materials in Civil Engineering:;2012:;Volume ( 024 ):;issue: 011
    Author:
    Shad Sargand
    ,
    Munir D. Nazzal
    ,
    Abdalla Al-Rawashdeh
    ,
    David Powers
    DOI: 10.1061/(ASCE)MT.1943-5533.0000434
    Publisher: American Society of Civil Engineers
    Abstract: Warm mix asphalt (WMA) has received considerable attention in the past few years to reduce energy consumption and pollutant emissions during hot mix asphalt (HMA) production and placement. However, many concerns and questions are still unanswered regarding the field performance and environmental benefits of WMA. In this study, WMA mixtures containing reclaimed asphalt pavement (RAP) were evaluated in a field project in Ohio. The project included using Aspha-min, Sasobit, and Evotherm in three test sections. Furthermore, a control section was also produced so that a side-by-side comparison could be made between WMA and HMA mixtures. Temperature and emissions were monitored during the production and placement of the considered WMA and HMA mixtures. In addition, core samples were obtained from the evaluated sections and tested in the laboratory. Roughness and rutting measurements were also conducted during the first 46 months of service. The results of this study showed that the emissions were significantly reduced during the production and placement of WMA mixtures as compared to the control HMA mixture. In addition, although WMA mixtures were compacted at much lower temperatures, they achieved higher in-place density than the control HMA mixture. The results of the laboratory tests conducted on core samples showed that the WMA mixtures had higher indirect tensile strength (ITS) than the HMA mixture after 3 months of service. However, the HMA ITS value increased more rapidly with time than that of the WMA. The moisture susceptibility test results demonstrated that the Sasobit and Evotherm mixtures exhibited acceptable resistance to moisture-induced damage. Finally, the collected performance data indicated that the WMA and HMA sections had similar International Roughness Index (IRI) values after 46 months of service. In addition, no measurable rutting was observed in any of the test sections.
    • Download: (731.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Evaluation of Warm-Mix Asphalt Technologies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66804
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorShad Sargand
    contributor authorMunir D. Nazzal
    contributor authorAbdalla Al-Rawashdeh
    contributor authorDavid Powers
    date accessioned2017-05-08T21:55:47Z
    date available2017-05-08T21:55:47Z
    date copyrightNovember 2012
    date issued2012
    identifier other%28asce%29mt%2E1943-5533%2E0000467.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66804
    description abstractWarm mix asphalt (WMA) has received considerable attention in the past few years to reduce energy consumption and pollutant emissions during hot mix asphalt (HMA) production and placement. However, many concerns and questions are still unanswered regarding the field performance and environmental benefits of WMA. In this study, WMA mixtures containing reclaimed asphalt pavement (RAP) were evaluated in a field project in Ohio. The project included using Aspha-min, Sasobit, and Evotherm in three test sections. Furthermore, a control section was also produced so that a side-by-side comparison could be made between WMA and HMA mixtures. Temperature and emissions were monitored during the production and placement of the considered WMA and HMA mixtures. In addition, core samples were obtained from the evaluated sections and tested in the laboratory. Roughness and rutting measurements were also conducted during the first 46 months of service. The results of this study showed that the emissions were significantly reduced during the production and placement of WMA mixtures as compared to the control HMA mixture. In addition, although WMA mixtures were compacted at much lower temperatures, they achieved higher in-place density than the control HMA mixture. The results of the laboratory tests conducted on core samples showed that the WMA mixtures had higher indirect tensile strength (ITS) than the HMA mixture after 3 months of service. However, the HMA ITS value increased more rapidly with time than that of the WMA. The moisture susceptibility test results demonstrated that the Sasobit and Evotherm mixtures exhibited acceptable resistance to moisture-induced damage. Finally, the collected performance data indicated that the WMA and HMA sections had similar International Roughness Index (IRI) values after 46 months of service. In addition, no measurable rutting was observed in any of the test sections.
    publisherAmerican Society of Civil Engineers
    titleField Evaluation of Warm-Mix Asphalt Technologies
    typeJournal Paper
    journal volume24
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000434
    treeJournal of Materials in Civil Engineering:;2012:;Volume ( 024 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian