YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lime Stabilization of Soils: Reappraisal

    Source: Journal of Materials in Civil Engineering:;2012:;Volume ( 024 ):;issue: 006
    Author:
    Sujit Kumar Dash
    ,
    Monowar Hussain
    DOI: 10.1061/(ASCE)MT.1943-5533.0000431
    Publisher: American Society of Civil Engineers
    Abstract: Lime generally improves the performance of soils. However, some cases reported an adverse effect. To develop an understanding of the underlying mechanisms, a systematic study covering a wide range of plasticity and mineralogy of soils was carried out. Six different soil samples were reconstituted using two extreme types of soils, in other words, a montmorillonite rich expansive soil and a silica-rich non-expansive soil. The influence of lime stabilization on these soils was evaluated through determination of geotechnical properties such as liquid limit, plastic limit, swell, compressive strength, mineralogy, and microstructure. An optimum lime content beyond which the strength improvement decreased was found. This phenomenon is more prominently observed with silica-rich soils that form silica gel. As the silica gel is highly porous, when formed in large scale the strength gain from cementation is substantially countered by the strength loss from gel pores, giving rise to a visible reduction in overall strength. Additionally, the gel materials hold a large amount of water, leading to increased plasticity and swelling. Therefore, excessive lime treatment should be avoided for silica-rich soils.
    • Download: (305.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lime Stabilization of Soils: Reappraisal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66801
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSujit Kumar Dash
    contributor authorMonowar Hussain
    date accessioned2017-05-08T21:55:47Z
    date available2017-05-08T21:55:47Z
    date copyrightJune 2012
    date issued2012
    identifier other%28asce%29mt%2E1943-5533%2E0000464.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66801
    description abstractLime generally improves the performance of soils. However, some cases reported an adverse effect. To develop an understanding of the underlying mechanisms, a systematic study covering a wide range of plasticity and mineralogy of soils was carried out. Six different soil samples were reconstituted using two extreme types of soils, in other words, a montmorillonite rich expansive soil and a silica-rich non-expansive soil. The influence of lime stabilization on these soils was evaluated through determination of geotechnical properties such as liquid limit, plastic limit, swell, compressive strength, mineralogy, and microstructure. An optimum lime content beyond which the strength improvement decreased was found. This phenomenon is more prominently observed with silica-rich soils that form silica gel. As the silica gel is highly porous, when formed in large scale the strength gain from cementation is substantially countered by the strength loss from gel pores, giving rise to a visible reduction in overall strength. Additionally, the gel materials hold a large amount of water, leading to increased plasticity and swelling. Therefore, excessive lime treatment should be avoided for silica-rich soils.
    publisherAmerican Society of Civil Engineers
    titleLime Stabilization of Soils: Reappraisal
    typeJournal Paper
    journal volume24
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000431
    treeJournal of Materials in Civil Engineering:;2012:;Volume ( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian