YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Fracture Behavior of Heterogeneous Infrastructure Materials with Extended-Finite-Element Method and Image Analysis

    Source: Journal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 012
    Author:
    Kenny Ng
    ,
    Qingli Dai
    DOI: 10.1061/(ASCE)MT.1943-5533.0000337
    Publisher: American Society of Civil Engineers
    Abstract: Infrastructure materials are essential components of the nation’s infrastructure and transportation systems. Deteriorating infrastructures require the development of computational tools to predict fracture behavior. The extended-finite-element method (XFEM) has been recently developed to eliminate remesh efforts by allowing crack propagation within continuous elements. The object of this study is to employ XFEM and image analysis techniques to numerically investigate fracture behavior within infrastructure materials. The XFEM was addressed with a discontinuous crack and inclusion enrichment function with the level-set method. The crack growth and stress intensity factors were also formulated. An extended-finite-element fracture model (XFE-FM) was developed with the MATLAB program for predicting fracture behavior with single-edge-notched beam (SEB) and split tensile (ST) tests. The developed XFE-FM was first validated with SEB testing on a homogeneous sample. In order to capture the real material microstructure, the digital samples of asphalt concrete and concrete specimens were generated with imaging processing and ellipse-fitting techniques. The predicted crack propagation with XFE-FM simulation on digital samples was compared with the fracture pattern of lab-tested specimens. The comparison results on open-mode middle-notched and mixed-mode offset-notched SEB and ST tests indicate that the developed XFE-FM has the ability to accurately predict fracture behavior within heterogeneous infrastructure materials.
    • Download: (319.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Fracture Behavior of Heterogeneous Infrastructure Materials with Extended-Finite-Element Method and Image Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66699
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorKenny Ng
    contributor authorQingli Dai
    date accessioned2017-05-08T21:55:36Z
    date available2017-05-08T21:55:36Z
    date copyrightDecember 2011
    date issued2011
    identifier other%28asce%29mt%2E1943-5533%2E0000371.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66699
    description abstractInfrastructure materials are essential components of the nation’s infrastructure and transportation systems. Deteriorating infrastructures require the development of computational tools to predict fracture behavior. The extended-finite-element method (XFEM) has been recently developed to eliminate remesh efforts by allowing crack propagation within continuous elements. The object of this study is to employ XFEM and image analysis techniques to numerically investigate fracture behavior within infrastructure materials. The XFEM was addressed with a discontinuous crack and inclusion enrichment function with the level-set method. The crack growth and stress intensity factors were also formulated. An extended-finite-element fracture model (XFE-FM) was developed with the MATLAB program for predicting fracture behavior with single-edge-notched beam (SEB) and split tensile (ST) tests. The developed XFE-FM was first validated with SEB testing on a homogeneous sample. In order to capture the real material microstructure, the digital samples of asphalt concrete and concrete specimens were generated with imaging processing and ellipse-fitting techniques. The predicted crack propagation with XFE-FM simulation on digital samples was compared with the fracture pattern of lab-tested specimens. The comparison results on open-mode middle-notched and mixed-mode offset-notched SEB and ST tests indicate that the developed XFE-FM has the ability to accurately predict fracture behavior within heterogeneous infrastructure materials.
    publisherAmerican Society of Civil Engineers
    titleInvestigation of Fracture Behavior of Heterogeneous Infrastructure Materials with Extended-Finite-Element Method and Image Analysis
    typeJournal Paper
    journal volume23
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000337
    treeJournal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian