YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    General Viscoelastic Solutions for Multilayered Systems Subjected to Static and Moving Loads

    Source: Journal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 007
    Author:
    Jaeseung Kim
    DOI: 10.1061/(ASCE)MT.1943-5533.0000270
    Publisher: American Society of Civil Engineers
    Abstract: Since the linear elastic layer solution for the layered systems was developed in the 1940s, the linear elastic layer analysis has been systemized and widely used for the designs of roadway pavements as a tool for evaluating the structural soundness of pavements. The primary assumption made in the analysis is that the layered system consisting of materials that are linear elastic; and hence, an application of the elastic layer analysis to asphalt mixtures, which is a well-known viscoelastic material, has been limited. Therefore, the intention of the study was to derive a viscoelastic solution able to take into account the time- and rate-dependent nature of the viscoelastic materials in the multilayered system. In this paper, a linear viscoelastic solution for the multilayered system subjected to a cylindrical unit step (static) load was derived from the elastic solution by using the principle of elastic-viscoelastic correspondence and the numerical inversion of Laplace transforms. The solution was then extended to simulating pavement responses subjected to a moving load by employing the Boltzmann’s superposition principle. The soundness of output from the viscoelastic solution was confirmed by comparing them to those of the finite-element analysis (FEA). Compared to the time and effort required in FEA, the analysis based on the viscoelastic solution was much faster. Therefore, it is expected that the viscoelastic solutions derived in this study will be an effective tool for the design of flexible pavements.
    • Download: (1.121Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      General Viscoelastic Solutions for Multilayered Systems Subjected to Static and Moving Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66626
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJaeseung Kim
    date accessioned2017-05-08T21:55:29Z
    date available2017-05-08T21:55:29Z
    date copyrightJuly 2011
    date issued2011
    identifier other%28asce%29mt%2E1943-5533%2E0000302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66626
    description abstractSince the linear elastic layer solution for the layered systems was developed in the 1940s, the linear elastic layer analysis has been systemized and widely used for the designs of roadway pavements as a tool for evaluating the structural soundness of pavements. The primary assumption made in the analysis is that the layered system consisting of materials that are linear elastic; and hence, an application of the elastic layer analysis to asphalt mixtures, which is a well-known viscoelastic material, has been limited. Therefore, the intention of the study was to derive a viscoelastic solution able to take into account the time- and rate-dependent nature of the viscoelastic materials in the multilayered system. In this paper, a linear viscoelastic solution for the multilayered system subjected to a cylindrical unit step (static) load was derived from the elastic solution by using the principle of elastic-viscoelastic correspondence and the numerical inversion of Laplace transforms. The solution was then extended to simulating pavement responses subjected to a moving load by employing the Boltzmann’s superposition principle. The soundness of output from the viscoelastic solution was confirmed by comparing them to those of the finite-element analysis (FEA). Compared to the time and effort required in FEA, the analysis based on the viscoelastic solution was much faster. Therefore, it is expected that the viscoelastic solutions derived in this study will be an effective tool for the design of flexible pavements.
    publisherAmerican Society of Civil Engineers
    titleGeneral Viscoelastic Solutions for Multilayered Systems Subjected to Static and Moving Loads
    typeJournal Paper
    journal volume23
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000270
    treeJournal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian