YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laboratory Evaluation of Sasobit-Modified Warm-Mix Asphalt for Alaskan Conditions

    Source: Journal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 011
    Author:
    Juanyu Liu
    ,
    Stephan Saboundjian
    ,
    Peng Li
    ,
    Billy Connor
    ,
    Bruce Brunette
    DOI: 10.1061/(ASCE)MT.1943-5533.0000226
    Publisher: American Society of Civil Engineers
    Abstract: A number of completed or ongoing studies on different aspects of warm-mix asphalt (WMA) have being conducted in the United States, indicating pavement professionals’ strong interest in exploring the application of this innovative technology. In the summer of 2008, a field trial project using Sasobit-modified WMA was established in the southeastern region of Alaska, which was Alaska’s first experience with a WMA technology. In line with this field experimental feature project, this paper presents a systematic laboratory study of both Sasobit-modified WMA binders and mixes. Engineering properties of Sasobit-modified WMA binders and mixes were experimentally evaluated, and the effects of Sasobit addition on the WMA’s performance in terms of low temperature behavior, rutting resistance, and moisture susceptibility were investigated. Research results identified a number of engineering benefits of Sasobit-modified WMAs over conventional HMA. Sasobit-modified WMAs reduced mixing and compaction temperatures, improved workability and rutting resistance, and had insignificant effect on moisture susceptibility. These effects indicated the suitability of this WMA technology for central and southeastern regions of the Alaska Department of Transportation and Public Facilities (AKDOT&PF). The indirect tension test results showed a decrease of WMAs tensile strength at low temperatures. Additional tests at lower temperatures, along with a more complete thermal cracking analysis need to be performed to obtain a more definitive answer regarding the low temperature performance of these mixes for the northern region of AKDOT&PF.
    • Download: (1.085Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laboratory Evaluation of Sasobit-Modified Warm-Mix Asphalt for Alaskan Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66578
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJuanyu Liu
    contributor authorStephan Saboundjian
    contributor authorPeng Li
    contributor authorBilly Connor
    contributor authorBruce Brunette
    date accessioned2017-05-08T21:55:24Z
    date available2017-05-08T21:55:24Z
    date copyrightNovember 2011
    date issued2011
    identifier other%28asce%29mt%2E1943-5533%2E0000257.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66578
    description abstractA number of completed or ongoing studies on different aspects of warm-mix asphalt (WMA) have being conducted in the United States, indicating pavement professionals’ strong interest in exploring the application of this innovative technology. In the summer of 2008, a field trial project using Sasobit-modified WMA was established in the southeastern region of Alaska, which was Alaska’s first experience with a WMA technology. In line with this field experimental feature project, this paper presents a systematic laboratory study of both Sasobit-modified WMA binders and mixes. Engineering properties of Sasobit-modified WMA binders and mixes were experimentally evaluated, and the effects of Sasobit addition on the WMA’s performance in terms of low temperature behavior, rutting resistance, and moisture susceptibility were investigated. Research results identified a number of engineering benefits of Sasobit-modified WMAs over conventional HMA. Sasobit-modified WMAs reduced mixing and compaction temperatures, improved workability and rutting resistance, and had insignificant effect on moisture susceptibility. These effects indicated the suitability of this WMA technology for central and southeastern regions of the Alaska Department of Transportation and Public Facilities (AKDOT&PF). The indirect tension test results showed a decrease of WMAs tensile strength at low temperatures. Additional tests at lower temperatures, along with a more complete thermal cracking analysis need to be performed to obtain a more definitive answer regarding the low temperature performance of these mixes for the northern region of AKDOT&PF.
    publisherAmerican Society of Civil Engineers
    titleLaboratory Evaluation of Sasobit-Modified Warm-Mix Asphalt for Alaskan Conditions
    typeJournal Paper
    journal volume23
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000226
    treeJournal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian