YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Compressive Creep of Virgin HDPE Using Equivalent Strain Energy Density Method

    Source: Journal of Materials in Civil Engineering:;2010:;Volume ( 022 ):;issue: 012
    Author:
    Amir Bozorg-Haddad
    ,
    Magued Iskander
    ,
    Hsiao-Lun Wang
    DOI: 10.1061/(ASCE)MT.1943-5533.0000136
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a predictive model for compressive creep behavior of high-density polyethylene (HDPE) commonly used to manufacture polymeric piling and geosynthetics. Accelerated methods to predict the tensile creep of polymers are already available. In this paper, a method to predict the compressive creep of viscoelastic polymers is proposed based on the equivalence of strain energy density (SED) between conventional constant-stress creep tests and strain-controlled stress-strain (ramp loading at different constant strain rates) tests. There is good agreement between the creep behaviors obtained from conventional tests and SED predictions when two stress-strain experiments with strain rates differing by two or more orders of magnitude are used. SED was also used as a basis for predicting the onset of tertiary creep. Finally, onset of tertiary creep was used for rational selection of the ultimate strength of viscoelastic materials, whose strength is inversely proportional to duration of loading.
    • Download: (394.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Compressive Creep of Virgin HDPE Using Equivalent Strain Energy Density Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66481
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAmir Bozorg-Haddad
    contributor authorMagued Iskander
    contributor authorHsiao-Lun Wang
    date accessioned2017-05-08T21:55:14Z
    date available2017-05-08T21:55:14Z
    date copyrightDecember 2010
    date issued2010
    identifier other%28asce%29mt%2E1943-5533%2E0000168.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66481
    description abstractThis paper presents a predictive model for compressive creep behavior of high-density polyethylene (HDPE) commonly used to manufacture polymeric piling and geosynthetics. Accelerated methods to predict the tensile creep of polymers are already available. In this paper, a method to predict the compressive creep of viscoelastic polymers is proposed based on the equivalence of strain energy density (SED) between conventional constant-stress creep tests and strain-controlled stress-strain (ramp loading at different constant strain rates) tests. There is good agreement between the creep behaviors obtained from conventional tests and SED predictions when two stress-strain experiments with strain rates differing by two or more orders of magnitude are used. SED was also used as a basis for predicting the onset of tertiary creep. Finally, onset of tertiary creep was used for rational selection of the ultimate strength of viscoelastic materials, whose strength is inversely proportional to duration of loading.
    publisherAmerican Society of Civil Engineers
    titleCompressive Creep of Virgin HDPE Using Equivalent Strain Energy Density Method
    typeJournal Paper
    journal volume22
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000136
    treeJournal of Materials in Civil Engineering:;2010:;Volume ( 022 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian