YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigating the Alkali-Silica Reaction of Recycled Glass Aggregates in Concrete Materials

    Source: Journal of Materials in Civil Engineering:;2010:;Volume ( 022 ):;issue: 012
    Author:
    Farshad Rajabipour
    ,
    Hamed Maraghechi
    ,
    Gregor Fischer
    DOI: 10.1061/(ASCE)MT.1943-5533.0000126
    Publisher: American Society of Civil Engineers
    Abstract: Application of crushed recycled glass in concrete materials can offer significant economical and environmental benefits provided that the alkali-silica reaction (ASR) of glass in concrete is properly controlled. Previous work on the use of glass sand in mortars shows that the reactivity of glass is influenced by its particle size as mortars containing finer glass sand show reduced ASR expansions. This may be counterintuitive since ASR is considered to be a surface reaction and should accelerate by increasing the surface area (i.e., reducing the size) of reactive aggregates. This paper presents a more in-depth investigation of the size-effect phenomena using scanning electron microscopy (SEM)/energy dispersive spectroscopy imaging of mortars containing different size glass particles. The SEM micrographs reveal that ASR does not occur at the glass-paste interface; rather, it occurs inside microcracks that exist inside glass particles which were generated during the glass bottle crushing operations. Larger size glass particles show larger and more active microcracks which render their high alkali-silica reactivity. At its interface with cement paste, glass shows evidence of pozzolanic reaction which leads to the formation of nonexpansive CSH. For particles smaller than #30 sieve (0.6 mm), the intraparticle ASR is minimal and only the interfacial pozzolanic reaction proceeds. This agrees well with the results of ASTM C1260 tests showing that mixed color glass aggregate smaller than #30 sieve does not produce deleterious ASR expansions in mortars even when no ASR suppressant (e.g., fly ash) is used.
    • Download: (170.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigating the Alkali-Silica Reaction of Recycled Glass Aggregates in Concrete Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/66470
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFarshad Rajabipour
    contributor authorHamed Maraghechi
    contributor authorGregor Fischer
    date accessioned2017-05-08T21:55:12Z
    date available2017-05-08T21:55:12Z
    date copyrightDecember 2010
    date issued2010
    identifier other%28asce%29mt%2E1943-5533%2E0000157.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66470
    description abstractApplication of crushed recycled glass in concrete materials can offer significant economical and environmental benefits provided that the alkali-silica reaction (ASR) of glass in concrete is properly controlled. Previous work on the use of glass sand in mortars shows that the reactivity of glass is influenced by its particle size as mortars containing finer glass sand show reduced ASR expansions. This may be counterintuitive since ASR is considered to be a surface reaction and should accelerate by increasing the surface area (i.e., reducing the size) of reactive aggregates. This paper presents a more in-depth investigation of the size-effect phenomena using scanning electron microscopy (SEM)/energy dispersive spectroscopy imaging of mortars containing different size glass particles. The SEM micrographs reveal that ASR does not occur at the glass-paste interface; rather, it occurs inside microcracks that exist inside glass particles which were generated during the glass bottle crushing operations. Larger size glass particles show larger and more active microcracks which render their high alkali-silica reactivity. At its interface with cement paste, glass shows evidence of pozzolanic reaction which leads to the formation of nonexpansive CSH. For particles smaller than #30 sieve (0.6 mm), the intraparticle ASR is minimal and only the interfacial pozzolanic reaction proceeds. This agrees well with the results of ASTM C1260 tests showing that mixed color glass aggregate smaller than #30 sieve does not produce deleterious ASR expansions in mortars even when no ASR suppressant (e.g., fly ash) is used.
    publisherAmerican Society of Civil Engineers
    titleInvestigating the Alkali-Silica Reaction of Recycled Glass Aggregates in Concrete Materials
    typeJournal Paper
    journal volume22
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000126
    treeJournal of Materials in Civil Engineering:;2010:;Volume ( 022 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian