YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interface Network Models for Complex Urban Infrastructure Systems

    Source: Journal of Infrastructure Systems:;2011:;Volume ( 017 ):;issue: 004
    Author:
    James Winkler
    ,
    Leonardo Dueñas-Osorio
    ,
    Robert Stein
    ,
    Devika Subramanian
    DOI: 10.1061/(ASCE)IS.1943-555X.0000068
    Publisher: American Society of Civil Engineers
    Abstract: The reliability assessment of infrastructure systems providing power, natural gas, and potable water is an integral part of societal preparedness to unforeseen hazards. The topological properties of interface networks connecting electric substations to water pumping stations and natural gas compressors have received little attention, despite the key role these connections play in operation and failure propagation. This work introduces a performance assessment methodology for coupled infrastructures that links physical fragility modeling with the topology of realistic and ideal connecting interfaces. Distinct interfaces based on features such as betweenness, clustering, vertex degree, and Euclidean distance are assessed regarding their role in connecting utility systems and propagating failures from random and hurricane events in Harris County, Texas. The interface minimizing the Euclidean distance between electric substations and other utility nodes exhibits a slow performance decline as random failures increase, and retains the greatest functionality under hurricane events compared to alternative interfaces, although it suffers from limited efficiency and controllability during normal operation. A convenient hybrid interface using both betweenness and distance features shows adequate performance during normal operation while exhibiting tolerance to random failures and sufficient performance at increasing hurricane event levels. These findings provide utility owners and operators with new simple yet adequate strategies focused on the interface across complex systems to enhance routine operation and reduce the probability of widespread interdependent failures following disruptive events.
    • Download: (2.627Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interface Network Models for Complex Urban Infrastructure Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65654
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorJames Winkler
    contributor authorLeonardo Dueñas-Osorio
    contributor authorRobert Stein
    contributor authorDevika Subramanian
    date accessioned2017-05-08T21:53:44Z
    date available2017-05-08T21:53:44Z
    date copyrightDecember 2011
    date issued2011
    identifier other%28asce%29is%2E1943-555x%2E0000098.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65654
    description abstractThe reliability assessment of infrastructure systems providing power, natural gas, and potable water is an integral part of societal preparedness to unforeseen hazards. The topological properties of interface networks connecting electric substations to water pumping stations and natural gas compressors have received little attention, despite the key role these connections play in operation and failure propagation. This work introduces a performance assessment methodology for coupled infrastructures that links physical fragility modeling with the topology of realistic and ideal connecting interfaces. Distinct interfaces based on features such as betweenness, clustering, vertex degree, and Euclidean distance are assessed regarding their role in connecting utility systems and propagating failures from random and hurricane events in Harris County, Texas. The interface minimizing the Euclidean distance between electric substations and other utility nodes exhibits a slow performance decline as random failures increase, and retains the greatest functionality under hurricane events compared to alternative interfaces, although it suffers from limited efficiency and controllability during normal operation. A convenient hybrid interface using both betweenness and distance features shows adequate performance during normal operation while exhibiting tolerance to random failures and sufficient performance at increasing hurricane event levels. These findings provide utility owners and operators with new simple yet adequate strategies focused on the interface across complex systems to enhance routine operation and reduce the probability of widespread interdependent failures following disruptive events.
    publisherAmerican Society of Civil Engineers
    titleInterface Network Models for Complex Urban Infrastructure Systems
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000068
    treeJournal of Infrastructure Systems:;2011:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian