YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying Evaporation from Pervious Concrete Systems: Methodology and Hydrologic Perspective

    Source: Journal of Irrigation and Drainage Engineering:;2013:;Volume ( 139 ):;issue: 004
    Author:
    Evgeny M. Nemirovsky
    ,
    Andrea L. Welker
    ,
    Ryan Lee
    DOI: 10.1061/(ASCE)IR.1943-4774.0000541
    Publisher: American Society of Civil Engineers
    Abstract: Permeable pavements underlain by infiltration beds have been used as storm-water control measures (SCMs) for several decades. As a design practice, runoff volume reduction in those systems is attributed exclusively to subsurface infiltration. Neglecting evaporation in the hydrologic cycle of permeable pavement systems is based on the perceived insignificance of this factor rather than on scientific evidence. This paper presents research designed to fill the knowledge gap in the evaporation behavior of pervious concrete SCMs. A laboratory simulation was conducted to identify parameters affecting evaporation from pervious concrete systems and to obtain the evaporation rates typical for summer months in the Philadelphia area. Considerations used in the experiment design, methodology, the experimental program, and the results are presented here. The depth to water surface and the time since rainfall event were both found to be significant terms in predicting the evaporation rate. The concept of influence depth was established and characterized as approximately 250 mm. A predictive empirical equation describing 24-h evaporation rates as a function of the initial depth and the time since the last rainstorm event was developed. Generalizing the experimental results to field conditions, the percentage of the water budget accounted for by evaporation from a single rain event was found to be highly variable, ranging from negligible to moderate depending on the watershed configuration and the size of the rain event. The paper includes a discussion of evaporation behavior and optimization of the design parameters to promote evaporation from pervious pavement systems.
    • Download: (395.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying Evaporation from Pervious Concrete Systems: Methodology and Hydrologic Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65454
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorEvgeny M. Nemirovsky
    contributor authorAndrea L. Welker
    contributor authorRyan Lee
    date accessioned2017-05-08T21:53:21Z
    date available2017-05-08T21:53:21Z
    date copyrightApril 2013
    date issued2013
    identifier other%28asce%29ir%2E1943-4774%2E0000569.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65454
    description abstractPermeable pavements underlain by infiltration beds have been used as storm-water control measures (SCMs) for several decades. As a design practice, runoff volume reduction in those systems is attributed exclusively to subsurface infiltration. Neglecting evaporation in the hydrologic cycle of permeable pavement systems is based on the perceived insignificance of this factor rather than on scientific evidence. This paper presents research designed to fill the knowledge gap in the evaporation behavior of pervious concrete SCMs. A laboratory simulation was conducted to identify parameters affecting evaporation from pervious concrete systems and to obtain the evaporation rates typical for summer months in the Philadelphia area. Considerations used in the experiment design, methodology, the experimental program, and the results are presented here. The depth to water surface and the time since rainfall event were both found to be significant terms in predicting the evaporation rate. The concept of influence depth was established and characterized as approximately 250 mm. A predictive empirical equation describing 24-h evaporation rates as a function of the initial depth and the time since the last rainstorm event was developed. Generalizing the experimental results to field conditions, the percentage of the water budget accounted for by evaporation from a single rain event was found to be highly variable, ranging from negligible to moderate depending on the watershed configuration and the size of the rain event. The paper includes a discussion of evaporation behavior and optimization of the design parameters to promote evaporation from pervious pavement systems.
    publisherAmerican Society of Civil Engineers
    titleQuantifying Evaporation from Pervious Concrete Systems: Methodology and Hydrologic Perspective
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000541
    treeJournal of Irrigation and Drainage Engineering:;2013:;Volume ( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian