YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Paved Area Reduction Factors under Temporally Varied Rainfall and Infiltration

    Source: Journal of Irrigation and Drainage Engineering:;2013:;Volume ( 139 ):;issue: 002
    Author:
    Gerald E. Blackler
    ,
    James C. Y. Guo
    DOI: 10.1061/(ASCE)IR.1943-4774.0000506
    Publisher: American Society of Civil Engineers
    Abstract: Best management practices (BMPs) for storm water drainage systems are used to increase storm water quality and reduce the amount of storm water runoff that is generated from a developed watershed. Paved area reduction factors, referred to as PARFs, are developed in this study to determine the reduction of storm water runoff when storm water BMPs are incorporated into storm water designs. PARFs determine the amount of runoff reduction by evaluating the effective impervious values of a watershed compared to the impervious value that is commonly determined by weighting the impervious and pervious areas. This study shows that there is a difference between the effective imperviousness and area-weighted imperviousness of a watershed. It also investigates PARFs that are developed under temporally varied rainfall and infiltration parameters and presents how they can vary from PARFs that are derived using constant rainfall and infiltration rates. This study creates an effective line to relate site-effective imperviousness with the infiltration to rainfall index that was developed in previous studies. The effective line provides an easy application to determine site-effective imperviousness from area-weighted impervious values. This study also quantifies the incentives of storm water BMPs by defining the net present value when imperviousness is a basis for storm water fees. It is found that a cost savings in storm water fees can be used to encourage storm water BMPs, and that applying temporally varied rainfall and infiltration for computing PARFs can show an increase in cost savings over previous methods.
    • Download: (476.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Paved Area Reduction Factors under Temporally Varied Rainfall and Infiltration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65416
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorGerald E. Blackler
    contributor authorJames C. Y. Guo
    date accessioned2017-05-08T21:53:17Z
    date available2017-05-08T21:53:17Z
    date copyrightFebruary 2013
    date issued2013
    identifier other%28asce%29ir%2E1943-4774%2E0000533.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65416
    description abstractBest management practices (BMPs) for storm water drainage systems are used to increase storm water quality and reduce the amount of storm water runoff that is generated from a developed watershed. Paved area reduction factors, referred to as PARFs, are developed in this study to determine the reduction of storm water runoff when storm water BMPs are incorporated into storm water designs. PARFs determine the amount of runoff reduction by evaluating the effective impervious values of a watershed compared to the impervious value that is commonly determined by weighting the impervious and pervious areas. This study shows that there is a difference between the effective imperviousness and area-weighted imperviousness of a watershed. It also investigates PARFs that are developed under temporally varied rainfall and infiltration parameters and presents how they can vary from PARFs that are derived using constant rainfall and infiltration rates. This study creates an effective line to relate site-effective imperviousness with the infiltration to rainfall index that was developed in previous studies. The effective line provides an easy application to determine site-effective imperviousness from area-weighted impervious values. This study also quantifies the incentives of storm water BMPs by defining the net present value when imperviousness is a basis for storm water fees. It is found that a cost savings in storm water fees can be used to encourage storm water BMPs, and that applying temporally varied rainfall and infiltration for computing PARFs can show an increase in cost savings over previous methods.
    publisherAmerican Society of Civil Engineers
    titlePaved Area Reduction Factors under Temporally Varied Rainfall and Infiltration
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000506
    treeJournal of Irrigation and Drainage Engineering:;2013:;Volume ( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian