YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiyear Performance of a Pervious Concrete Infiltration Basin BMP

    Source: Journal of Irrigation and Drainage Engineering:;2011:;Volume ( 137 ):;issue: 006
    Author:
    Michael Horst
    ,
    Andrea L. Welker
    ,
    Robert G. Traver
    DOI: 10.1061/(ASCE)IR.1943-4774.0000302
    Publisher: American Society of Civil Engineers
    Abstract: The use of infiltration storm-water best management practices (BMPs) has become a more commonly used approach as a means of reducing postdevelopment runoff volumes in many areas throughout the United States. Although studies regarding the performance of infiltration BMPs are emerging, much remains to be learned about their design, construction, and operation. The increase in knowledge will improve the performance and longevity of these BMPs. The performance of one such infiltration basin over a 2-year cycle is presented in this paper. The study site is a pervious concrete infiltration basin BMP built in 2002 in a courtyard common area at Villanova University. The system consists of three linked infiltration beds lined with geotextile filter fabric, filled with coarse aggregate, and overlaid with pervious concrete. The natural soil beneath the infiltration BMP is a silty sand. The BMP is extensively instrumented to facilitate water quantity and quality research. Both water-quantity and -quality results are presented. The water-quantity analysis showed that the performance of the basin was directly related to its infiltration characteristics. The infiltration rate of the silty sand is cyclic, with higher rates during warmer periods and lower rates during colder periods. The water quality analysis investigated the pollutant reduction for chloride, copper, nitrogen, and phosphorus from the inlet to the surface-water outlet of the structure, as well as differences in pollutant concentration levels between the basin, surrounding ground, and varying soil layer elevations beneath the basin. In general, the pollutant reduction to the surface waters was greater than 90% from inlet to outlet, primarily influenced by the infiltration of the storm water into the natural soils below the BMP. The pollutant concentration of the infiltrating runoff was found to be higher than expected in the area adjacent to the bed when compared to concentration levels found at a similar depth beneath the infiltration bed. Comparison of pollutant concentration levels, as the water moved from within the storage bed to the soil beneath the bed, were shown to vary, with statistical differences found for mean concentration levels of both pH and copper levels; and no statistical differences were found for conductivity, total phosphorous, and chloride at each elevation.
    • Download: (1.301Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiyear Performance of a Pervious Concrete Infiltration Basin BMP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65199
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorMichael Horst
    contributor authorAndrea L. Welker
    contributor authorRobert G. Traver
    date accessioned2017-05-08T21:52:53Z
    date available2017-05-08T21:52:53Z
    date copyrightJune 2011
    date issued2011
    identifier other%28asce%29ir%2E1943-4774%2E0000331.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65199
    description abstractThe use of infiltration storm-water best management practices (BMPs) has become a more commonly used approach as a means of reducing postdevelopment runoff volumes in many areas throughout the United States. Although studies regarding the performance of infiltration BMPs are emerging, much remains to be learned about their design, construction, and operation. The increase in knowledge will improve the performance and longevity of these BMPs. The performance of one such infiltration basin over a 2-year cycle is presented in this paper. The study site is a pervious concrete infiltration basin BMP built in 2002 in a courtyard common area at Villanova University. The system consists of three linked infiltration beds lined with geotextile filter fabric, filled with coarse aggregate, and overlaid with pervious concrete. The natural soil beneath the infiltration BMP is a silty sand. The BMP is extensively instrumented to facilitate water quantity and quality research. Both water-quantity and -quality results are presented. The water-quantity analysis showed that the performance of the basin was directly related to its infiltration characteristics. The infiltration rate of the silty sand is cyclic, with higher rates during warmer periods and lower rates during colder periods. The water quality analysis investigated the pollutant reduction for chloride, copper, nitrogen, and phosphorus from the inlet to the surface-water outlet of the structure, as well as differences in pollutant concentration levels between the basin, surrounding ground, and varying soil layer elevations beneath the basin. In general, the pollutant reduction to the surface waters was greater than 90% from inlet to outlet, primarily influenced by the infiltration of the storm water into the natural soils below the BMP. The pollutant concentration of the infiltrating runoff was found to be higher than expected in the area adjacent to the bed when compared to concentration levels found at a similar depth beneath the infiltration bed. Comparison of pollutant concentration levels, as the water moved from within the storage bed to the soil beneath the bed, were shown to vary, with statistical differences found for mean concentration levels of both pH and copper levels; and no statistical differences were found for conductivity, total phosphorous, and chloride at each elevation.
    publisherAmerican Society of Civil Engineers
    titleMultiyear Performance of a Pervious Concrete Infiltration Basin BMP
    typeJournal Paper
    journal volume137
    journal issue6
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000302
    treeJournal of Irrigation and Drainage Engineering:;2011:;Volume ( 137 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian