YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Method of Superimposition for Suction Force on Trash Rack

    Source: Journal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    James C. Y. Guo
    ,
    Jonathan E. Jones
    ,
    Andrew Earles
    DOI: 10.1061/(ASCE)IR.1943-4774.0000253
    Publisher: American Society of Civil Engineers
    Abstract: As recommended, culvert entrances in urban areas should be protected with a rack or a grate because urban flood flows are quick, concentrated, and fast. Safety around storm-water facilities is an increasing concern for the public. Many forensic cases indicate that a trash rack at the entrance can prevent a human body from being washed into the culvert pipe, but on the other hand, a trash rack increases the flow velocity and results in a pinning force on the human body landed on the rack. While having a trash rack at a culvert entrance has the potential to result in a pinning force and to accumulate trash/debris, the public safety benefit of a trash rack in preventing a person from being drawn into an underground conduit outweigh the risks of the potential pinning force and/or trash/debris blockage. The conventional approach can only provide the total external force acting on a culvert-rack system, including the reaction forces from the wing walls and the rack with or without blockage. This study presents a new method of superimposition that can solve the external forces one by one progressively. Results from the case study indicate that the hydrostatic force due to the high headwater in front of the culvert entrance is mostly balanced by the reaction force from the wing walls. The pinning force on the submerged trash rack is mainly the response to the change in the flow momentum force. In comparison, the pinning force is much smaller than the total external force. A pinning force is a normal force on the rack surface. The effort to escape from being pinned on the trash rack is to overcome the friction along the rack surface.
    • Download: (764.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Method of Superimposition for Suction Force on Trash Rack

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65145
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorJames C. Y. Guo
    contributor authorJonathan E. Jones
    contributor authorAndrew Earles
    date accessioned2017-05-08T21:52:47Z
    date available2017-05-08T21:52:47Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29ir%2E1943-4774%2E0000280.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65145
    description abstractAs recommended, culvert entrances in urban areas should be protected with a rack or a grate because urban flood flows are quick, concentrated, and fast. Safety around storm-water facilities is an increasing concern for the public. Many forensic cases indicate that a trash rack at the entrance can prevent a human body from being washed into the culvert pipe, but on the other hand, a trash rack increases the flow velocity and results in a pinning force on the human body landed on the rack. While having a trash rack at a culvert entrance has the potential to result in a pinning force and to accumulate trash/debris, the public safety benefit of a trash rack in preventing a person from being drawn into an underground conduit outweigh the risks of the potential pinning force and/or trash/debris blockage. The conventional approach can only provide the total external force acting on a culvert-rack system, including the reaction forces from the wing walls and the rack with or without blockage. This study presents a new method of superimposition that can solve the external forces one by one progressively. Results from the case study indicate that the hydrostatic force due to the high headwater in front of the culvert entrance is mostly balanced by the reaction force from the wing walls. The pinning force on the submerged trash rack is mainly the response to the change in the flow momentum force. In comparison, the pinning force is much smaller than the total external force. A pinning force is a normal force on the rack surface. The effort to escape from being pinned on the trash rack is to overcome the friction along the rack surface.
    publisherAmerican Society of Civil Engineers
    titleMethod of Superimposition for Suction Force on Trash Rack
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000253
    treeJournal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian