YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow over Gabion Weirs

    Source: Journal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 008
    Author:
    Hassan I. Mohamed
    DOI: 10.1061/(ASCE)IR.1943-4774.0000215
    Publisher: American Society of Civil Engineers
    Abstract: A conventional weir typically consists of an impermeable body constructed of concrete, since its primary functions are to heading up water and efficiently regulate flow. However, an impermeable body prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on the water environment. One of the advantages of gabions as a building material is that the motion of individual stones comprising the gabion is not of much concern. The wire mesh of the gabion basket serves to restrain any significant movement. Also, gabion weirs offer an alternative design that could be adopted for flash flood mitigation. In this study, a series of laboratory experiments was performed in order to investigate the flow over gabion weirs. For this purpose, two different gabion weir models were tested in two horizontal laboratory flumes of 10-m and 17-m length, 0.3-m width, and 0.3- and 0.5-m depth, respectively, for a wide range of discharge, upstream water depth, downstream water depth, weir height, weir length, and gabion filling gravel material size. The results of the gabion weir were compared with those of experiments carried out on solid weirs having the same dimension and it was found that there is a large deviation when the solid weirs equation is applied to gabion weirs (permeable weirs). So, using one of the existing solid weir flow formulas would lead to an erroneous calculated value. Multiple regression equations based on the dimensional analysis theory were developed for computing the discharge over gabion weirs for both free and submerged flow regimes. Also, equations were introduced for computing the discharge coefficient to be applied with the traditional solid weir equation.
    • Download: (526.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow over Gabion Weirs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65104
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorHassan I. Mohamed
    date accessioned2017-05-08T21:52:44Z
    date available2017-05-08T21:52:44Z
    date copyrightAugust 2010
    date issued2010
    identifier other%28asce%29ir%2E1943-4774%2E0000243.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65104
    description abstractA conventional weir typically consists of an impermeable body constructed of concrete, since its primary functions are to heading up water and efficiently regulate flow. However, an impermeable body prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on the water environment. One of the advantages of gabions as a building material is that the motion of individual stones comprising the gabion is not of much concern. The wire mesh of the gabion basket serves to restrain any significant movement. Also, gabion weirs offer an alternative design that could be adopted for flash flood mitigation. In this study, a series of laboratory experiments was performed in order to investigate the flow over gabion weirs. For this purpose, two different gabion weir models were tested in two horizontal laboratory flumes of 10-m and 17-m length, 0.3-m width, and 0.3- and 0.5-m depth, respectively, for a wide range of discharge, upstream water depth, downstream water depth, weir height, weir length, and gabion filling gravel material size. The results of the gabion weir were compared with those of experiments carried out on solid weirs having the same dimension and it was found that there is a large deviation when the solid weirs equation is applied to gabion weirs (permeable weirs). So, using one of the existing solid weir flow formulas would lead to an erroneous calculated value. Multiple regression equations based on the dimensional analysis theory were developed for computing the discharge over gabion weirs for both free and submerged flow regimes. Also, equations were introduced for computing the discharge coefficient to be applied with the traditional solid weir equation.
    publisherAmerican Society of Civil Engineers
    titleFlow over Gabion Weirs
    typeJournal Paper
    journal volume136
    journal issue8
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000215
    treeJournal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian