YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Infilling Missing Daily Evapotranspiration Data Using Neural Networks

    Source: Journal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 005
    Author:
    Shalamu Abudu
    ,
    A. Salim Bawazir
    ,
    J. Phillip King
    DOI: 10.1061/(ASCE)IR.1943-4774.0000197
    Publisher: American Society of Civil Engineers
    Abstract: This study used artificial neural networks (ANNs) computing technique for infilling missing daily saltcedar evapotranspiration (ET) as measured by the eddy-covariance method. The study site was at Bosque del Apache National Wildlife Refuge in the Middle Rio Grande Valley, New Mexico. Data was collected from 2001 to 2003. Several ANN models were evaluated for infilling of different combinations of missing data percentages and different gap sizes. The ANN model using daily maximum and minimum temperature, daily solar radiation, day of the year, and the calendar year as inputs showed the best estimation performance. Results showed coefficient of determination
    • Download: (618.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Infilling Missing Daily Evapotranspiration Data Using Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65084
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorShalamu Abudu
    contributor authorA. Salim Bawazir
    contributor authorJ. Phillip King
    date accessioned2017-05-08T21:52:42Z
    date available2017-05-08T21:52:42Z
    date copyrightMay 2010
    date issued2010
    identifier other%28asce%29ir%2E1943-4774%2E0000224.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65084
    description abstractThis study used artificial neural networks (ANNs) computing technique for infilling missing daily saltcedar evapotranspiration (ET) as measured by the eddy-covariance method. The study site was at Bosque del Apache National Wildlife Refuge in the Middle Rio Grande Valley, New Mexico. Data was collected from 2001 to 2003. Several ANN models were evaluated for infilling of different combinations of missing data percentages and different gap sizes. The ANN model using daily maximum and minimum temperature, daily solar radiation, day of the year, and the calendar year as inputs showed the best estimation performance. Results showed coefficient of determination
    publisherAmerican Society of Civil Engineers
    titleInfilling Missing Daily Evapotranspiration Data Using Neural Networks
    typeJournal Paper
    journal volume136
    journal issue5
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000197
    treeJournal of Irrigation and Drainage Engineering:;2010:;Volume ( 136 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian