YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Groundwater Mounding at a Storm-Water Infiltration BMP

    Source: Journal of Irrigation and Drainage Engineering:;2011:;Volume ( 137 ):;issue: 003
    Author:
    Matthew Machusick
    ,
    Andrea Welker
    ,
    Robert Traver
    DOI: 10.1061/(ASCE)IR.1943-4774.0000184
    Publisher: American Society of Civil Engineers
    Abstract: This research presents an initial study of the impacts of storm-water infiltration on a shallow unconfined aquifer at a bioinfiltration best management practice (BMP) on the campus of Villanova University. The study site is a vegetated infiltration basin with a 0.52 ha drainage area consisting of parking areas and recreational fields and features approximately 35% directly connected impervious area. The research utilized continuous monitoring of precipitation, groundwater elevation, and groundwater temperature in conjunction with surface water hydrologic modeling to assess the duration, magnitude, and extent of groundwater mounding at a storm-water infiltration BMP. Results indicate that precipitation greater than 1.80 cm causes increased mounding at wells adjacent to the site. In addition, it was found that precipitation less than approximately 1.80 cm leads to larger increases in groundwater elevation at an upgradient control well located near the edge of a large grass field. The extent of groundwater mounding is observed to be localized to the BMP and does not extend a significant distance downgradient. In addition, the magnitude and duration of groundwater mounding is related to both infiltration rate and groundwater temperature, such that cooler temperatures correlate to increased mounding. This study demonstrates the utility of groundwater monitoring for the purpose of BMP hydraulic performance assessment, and recommends that additional research be conducted in the future and that groundwater monitoring be considered for site monitoring plans.
    • Download: (92.91Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Groundwater Mounding at a Storm-Water Infiltration BMP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/65071
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorMatthew Machusick
    contributor authorAndrea Welker
    contributor authorRobert Traver
    date accessioned2017-05-08T21:52:41Z
    date available2017-05-08T21:52:41Z
    date copyrightMarch 2011
    date issued2011
    identifier other%28asce%29ir%2E1943-4774%2E0000212.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/65071
    description abstractThis research presents an initial study of the impacts of storm-water infiltration on a shallow unconfined aquifer at a bioinfiltration best management practice (BMP) on the campus of Villanova University. The study site is a vegetated infiltration basin with a 0.52 ha drainage area consisting of parking areas and recreational fields and features approximately 35% directly connected impervious area. The research utilized continuous monitoring of precipitation, groundwater elevation, and groundwater temperature in conjunction with surface water hydrologic modeling to assess the duration, magnitude, and extent of groundwater mounding at a storm-water infiltration BMP. Results indicate that precipitation greater than 1.80 cm causes increased mounding at wells adjacent to the site. In addition, it was found that precipitation less than approximately 1.80 cm leads to larger increases in groundwater elevation at an upgradient control well located near the edge of a large grass field. The extent of groundwater mounding is observed to be localized to the BMP and does not extend a significant distance downgradient. In addition, the magnitude and duration of groundwater mounding is related to both infiltration rate and groundwater temperature, such that cooler temperatures correlate to increased mounding. This study demonstrates the utility of groundwater monitoring for the purpose of BMP hydraulic performance assessment, and recommends that additional research be conducted in the future and that groundwater monitoring be considered for site monitoring plans.
    publisherAmerican Society of Civil Engineers
    titleGroundwater Mounding at a Storm-Water Infiltration BMP
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000184
    treeJournal of Irrigation and Drainage Engineering:;2011:;Volume ( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian