YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microscopic Modeling of Air Migration during Air Sparging

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2011:;Volume ( 015 ):;issue: 002
    Author:
    Shengyan Gao
    ,
    Jay N. Meegoda
    ,
    Liming Hu
    DOI: 10.1061/(ASCE)HZ.1944-8376.0000063
    Publisher: American Society of Civil Engineers
    Abstract: Air sparging is an emerging soil remediation method to decontaminate saturated granular soils and groundwater with volatile organic compounds (VOCs). The efficiency of an in situ sparging system is controlled by the extent of the contact between injected air and contaminated soil and pore fluid. Characterizing the mechanisms governing the movement of air through saturated porous media is therefore critical to the design of an effective cleanup treatment system. In this paper, an overview of the existing conceptual models and related microscopic research on air sparging is provided. Then, main issues associated with microscopic modeling of air sparging, including simulation of microstructure of porous medium, migration of fine particles along the air flow path, air flow pattern transition criteria, and critical size of air bubbles or clusters are discussed. Finally, three-dimensional (3D) networks of pore bodies connected by pore throats representing the main skeleton of the pore structure of porous media are recommended as the prototype of a pore-scale model to account for these irregularities in channel geometry. Methods used in constructing a 3D network are briefly summarized. According to the air-water two-phase flow theory, the transition criteria between two flow patterns observed during air sparging tests—bubbly flow and channelized flow—are discussed. The manuscript also discusses the critical size of a bubble or a bubble cluster during air sparging in a given soil. A method to estimate the critical size of a bubble or a bubble cluster in a 3D network model is suggested. Hence, this paper lays a basis for microscopic research on air spatial distribution, air saturation, air flow pattern transition, and air flow rate during the air sparging.
    • Download: (677.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microscopic Modeling of Air Migration during Air Sparging

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64768
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorShengyan Gao
    contributor authorJay N. Meegoda
    contributor authorLiming Hu
    date accessioned2017-05-08T21:52:10Z
    date available2017-05-08T21:52:10Z
    date copyrightApril 2011
    date issued2011
    identifier other%28asce%29hz%2E2153-5515%2E0000094.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64768
    description abstractAir sparging is an emerging soil remediation method to decontaminate saturated granular soils and groundwater with volatile organic compounds (VOCs). The efficiency of an in situ sparging system is controlled by the extent of the contact between injected air and contaminated soil and pore fluid. Characterizing the mechanisms governing the movement of air through saturated porous media is therefore critical to the design of an effective cleanup treatment system. In this paper, an overview of the existing conceptual models and related microscopic research on air sparging is provided. Then, main issues associated with microscopic modeling of air sparging, including simulation of microstructure of porous medium, migration of fine particles along the air flow path, air flow pattern transition criteria, and critical size of air bubbles or clusters are discussed. Finally, three-dimensional (3D) networks of pore bodies connected by pore throats representing the main skeleton of the pore structure of porous media are recommended as the prototype of a pore-scale model to account for these irregularities in channel geometry. Methods used in constructing a 3D network are briefly summarized. According to the air-water two-phase flow theory, the transition criteria between two flow patterns observed during air sparging tests—bubbly flow and channelized flow—are discussed. The manuscript also discusses the critical size of a bubble or a bubble cluster during air sparging in a given soil. A method to estimate the critical size of a bubble or a bubble cluster in a 3D network model is suggested. Hence, this paper lays a basis for microscopic research on air spatial distribution, air saturation, air flow pattern transition, and air flow rate during the air sparging.
    publisherAmerican Society of Civil Engineers
    titleMicroscopic Modeling of Air Migration during Air Sparging
    typeJournal Paper
    journal volume15
    journal issue2
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.1944-8376.0000063
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2011:;Volume ( 015 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian