YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of a Geobag Revetment. I: Quasi-Physical Modeling

    Source: Journal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 008
    Author:
    Aysha Akter
    ,
    Gareth Pender
    ,
    Grant Wright
    ,
    Martin Crapper
    DOI: 10.1061/(ASCE)HY.1943-7900.0000735
    Publisher: American Society of Civil Engineers
    Abstract: In recent years, sand-filled geotextile bags (geobags) have become a popular means of long-term riverbank protection. However, the associated failure mechanisms of geobag revetments are still not well understood. Three interactions influence geobag performance, namely, geobag–geobag, geobag–water flow, and geobag–water flow–riverbank interactions. To enhance the fundamental understanding of the performance of geobags in a revetment, a laboratory experimental program has been undertaken using both a fixed bed and a mobile sediment bed. In the experimental study, 600 bags were used to construct geobag revetments, and failure modes were observed for these two bed configurations. In general, there were some common trends for both bed configurations (i.e., uplifting, turbulent bursting–induced flow through the revetment voids, overtopping, pulling out, and/or internal sliding), but in the mobile bed case, toe scouring had a significant negative influence on geobag performance. To extend the laboratory measured hydraulic parameters, the conveyance estimation system (CES) was used. A CES model was validated against fixed-bed experimental observations, and the validated model was then used to predict mobile-bed formations. The CES bed predictions were used to produce a failure diagram under geobag–water flow interactions and classification of bed formation under geobag–water flow–riverbank interactions. It is concluded that the CES can be a useful and computationally efficient tool for the prediction of hydraulic parameters and bed formations. In the next phase of the research, observations from the experimental program will be used to validate a discrete element model of a geobag revetment, which will be used to help develop much-needed geobag revetment design guidance.
    • Download: (1.193Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of a Geobag Revetment. I: Quasi-Physical Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64601
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorAysha Akter
    contributor authorGareth Pender
    contributor authorGrant Wright
    contributor authorMartin Crapper
    date accessioned2017-05-08T21:51:45Z
    date available2017-05-08T21:51:45Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29hy%2E1943-7900%2E0000764.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64601
    description abstractIn recent years, sand-filled geotextile bags (geobags) have become a popular means of long-term riverbank protection. However, the associated failure mechanisms of geobag revetments are still not well understood. Three interactions influence geobag performance, namely, geobag–geobag, geobag–water flow, and geobag–water flow–riverbank interactions. To enhance the fundamental understanding of the performance of geobags in a revetment, a laboratory experimental program has been undertaken using both a fixed bed and a mobile sediment bed. In the experimental study, 600 bags were used to construct geobag revetments, and failure modes were observed for these two bed configurations. In general, there were some common trends for both bed configurations (i.e., uplifting, turbulent bursting–induced flow through the revetment voids, overtopping, pulling out, and/or internal sliding), but in the mobile bed case, toe scouring had a significant negative influence on geobag performance. To extend the laboratory measured hydraulic parameters, the conveyance estimation system (CES) was used. A CES model was validated against fixed-bed experimental observations, and the validated model was then used to predict mobile-bed formations. The CES bed predictions were used to produce a failure diagram under geobag–water flow interactions and classification of bed formation under geobag–water flow–riverbank interactions. It is concluded that the CES can be a useful and computationally efficient tool for the prediction of hydraulic parameters and bed formations. In the next phase of the research, observations from the experimental program will be used to validate a discrete element model of a geobag revetment, which will be used to help develop much-needed geobag revetment design guidance.
    publisherAmerican Society of Civil Engineers
    titlePerformance of a Geobag Revetment. I: Quasi-Physical Modeling
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000735
    treeJournal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian