YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time-Average Velocity and Turbulence Measurement Using Wireless Bend Sensors in an Open Channel with a Rough Bed

    Source: Journal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 007
    Author:
    Robert L. Stewart
    ,
    James F. Fox
    ,
    Cindy K. Harnett
    DOI: 10.1061/(ASCE)HY.1943-7900.0000725
    Publisher: American Society of Civil Engineers
    Abstract: This paper is motivated by the need to develop low cost, wireless velocity sensors for hydraulic research and application in streams. A velocity bend sensor (VBS) is a flexible plastic polyimide substrate sheet with an electronic resistor connected to a voltage divider. Drag of a moving fluid bends the sensor, changes the electronic resistance, and produces a voltage drop that can be related to the time-averaged freestream velocity of the fluid. VBSs were tested in a recirculating hydraulic flume with a gravel bed. The VBSs show transition from rigid to elastic bending with increasing freestream velocity, which can be described using dimensionless fluid and beam-bending properties. The relationship between stream velocity and voltage drop across the circuit is nonlinear. A semitheoretical approach to estimate time-averaged streamwise velocity from the voltage drop based on fluid drag, elastic member bending, and circuit principles is applied and shows good agreement with experimentally derived calibration curves. The triple decomposition theorem and spectral analysis are performed on VBS and acoustic Doppler velocimeter (ADV) time series. Results show that the VBS captures low-frequency characteristics of macroturblence present within the turbulent open channel flow but is unable to measure smaller-scale characteristics of eddy shedding for these hydraulic conditions. Turbulent intensity calculated using VBS data is 12% of that from the ADV attributed to the lack of detection of shedding-sized eddies. But, the linear fit between turbulent intensity from the VBS and ADV suggests that the VBS can be used as a proxy for more detailed turbulent measurements when applied in streams.
    • Download: (453.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time-Average Velocity and Turbulence Measurement Using Wireless Bend Sensors in an Open Channel with a Rough Bed

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64591
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorRobert L. Stewart
    contributor authorJames F. Fox
    contributor authorCindy K. Harnett
    date accessioned2017-05-08T21:51:44Z
    date available2017-05-08T21:51:44Z
    date copyrightJuly 2013
    date issued2013
    identifier other%28asce%29hy%2E1943-7900%2E0000752.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64591
    description abstractThis paper is motivated by the need to develop low cost, wireless velocity sensors for hydraulic research and application in streams. A velocity bend sensor (VBS) is a flexible plastic polyimide substrate sheet with an electronic resistor connected to a voltage divider. Drag of a moving fluid bends the sensor, changes the electronic resistance, and produces a voltage drop that can be related to the time-averaged freestream velocity of the fluid. VBSs were tested in a recirculating hydraulic flume with a gravel bed. The VBSs show transition from rigid to elastic bending with increasing freestream velocity, which can be described using dimensionless fluid and beam-bending properties. The relationship between stream velocity and voltage drop across the circuit is nonlinear. A semitheoretical approach to estimate time-averaged streamwise velocity from the voltage drop based on fluid drag, elastic member bending, and circuit principles is applied and shows good agreement with experimentally derived calibration curves. The triple decomposition theorem and spectral analysis are performed on VBS and acoustic Doppler velocimeter (ADV) time series. Results show that the VBS captures low-frequency characteristics of macroturblence present within the turbulent open channel flow but is unable to measure smaller-scale characteristics of eddy shedding for these hydraulic conditions. Turbulent intensity calculated using VBS data is 12% of that from the ADV attributed to the lack of detection of shedding-sized eddies. But, the linear fit between turbulent intensity from the VBS and ADV suggests that the VBS can be used as a proxy for more detailed turbulent measurements when applied in streams.
    publisherAmerican Society of Civil Engineers
    titleTime-Average Velocity and Turbulence Measurement Using Wireless Bend Sensors in an Open Channel with a Rough Bed
    typeJournal Paper
    journal volume139
    journal issue7
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000725
    treeJournal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian