YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of the Coarse Surface Development Effect on the Bimodal Bed-Load Transport under Unsteady Flow Conditions

    Source: Journal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 001
    Author:
    Mehmet Sukru Guney
    ,
    Gokcen Bombar
    ,
    Aysegul Ozgenc Aksoy
    DOI: 10.1061/(ASCE)HY.1943-7900.0000640
    Publisher: American Society of Civil Engineers
    Abstract: Gravel-bed rivers display a surface layer that is coarser than the substrate lining below this armored surface. The armored layer that is developed under certain flow conditions may be attributed as water-worked sediment bed. Both the threshold of incipient motion and the bed-load transport are affected by the presence of this layer. In this study, the coarse surface development and its effect on the sediment transport were investigated experimentally in a rectangular flume. Four antecedent flow rates were combined with an input hydrograph, without sediment feeding. The reference shear stress of individual fractions and the grain-size distribution were determined after the development of the coarse surface due to the antecedent flow. Then a triangular-shaped hydrograph was generated for both the intact surface and the coarse surface cases. It was seen that the maximum bed-load transport values obtained in unsteady flow experiments were highly dependent on the coarse surface formed by the antecedent flow. The interrelation between the armor ratio and the total bed load was also sought. It was revealed that there existed a nearly linear relation between the armor ratio and the dimensionless total bed load with a correlation coefficient of 0.99. This strong interdependence implies that the knowledge of the armor ratio is of basic and utmost importance to predict accurately the bed load to be transported. The values of the Einstein bed-load transport parameter were plotted versus those of the dimensionless shear stress. When the global sediment transport was considered, a clockwise hysteresis appeared in the case of the initial intact bed surface, whereas a counterclockwise hysteresis arose when the coarse surface was developed. As for the fractional sediment transport, in the case of the intact initial surface the clockwise hysteresis was encountered more frequently, but for the armored bed experiments the coarser the bed surface, the more dominant was the counterclockwise hysteresis, meaning that the quantity transported during the falling limb of the hydrograph was higher than that transported during the rising limb.
    • Download: (1.795Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of the Coarse Surface Development Effect on the Bimodal Bed-Load Transport under Unsteady Flow Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64501
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMehmet Sukru Guney
    contributor authorGokcen Bombar
    contributor authorAysegul Ozgenc Aksoy
    date accessioned2017-05-08T21:51:33Z
    date available2017-05-08T21:51:33Z
    date copyrightJanuary 2013
    date issued2013
    identifier other%28asce%29hy%2E1943-7900%2E0000669.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64501
    description abstractGravel-bed rivers display a surface layer that is coarser than the substrate lining below this armored surface. The armored layer that is developed under certain flow conditions may be attributed as water-worked sediment bed. Both the threshold of incipient motion and the bed-load transport are affected by the presence of this layer. In this study, the coarse surface development and its effect on the sediment transport were investigated experimentally in a rectangular flume. Four antecedent flow rates were combined with an input hydrograph, without sediment feeding. The reference shear stress of individual fractions and the grain-size distribution were determined after the development of the coarse surface due to the antecedent flow. Then a triangular-shaped hydrograph was generated for both the intact surface and the coarse surface cases. It was seen that the maximum bed-load transport values obtained in unsteady flow experiments were highly dependent on the coarse surface formed by the antecedent flow. The interrelation between the armor ratio and the total bed load was also sought. It was revealed that there existed a nearly linear relation between the armor ratio and the dimensionless total bed load with a correlation coefficient of 0.99. This strong interdependence implies that the knowledge of the armor ratio is of basic and utmost importance to predict accurately the bed load to be transported. The values of the Einstein bed-load transport parameter were plotted versus those of the dimensionless shear stress. When the global sediment transport was considered, a clockwise hysteresis appeared in the case of the initial intact bed surface, whereas a counterclockwise hysteresis arose when the coarse surface was developed. As for the fractional sediment transport, in the case of the intact initial surface the clockwise hysteresis was encountered more frequently, but for the armored bed experiments the coarser the bed surface, the more dominant was the counterclockwise hysteresis, meaning that the quantity transported during the falling limb of the hydrograph was higher than that transported during the rising limb.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of the Coarse Surface Development Effect on the Bimodal Bed-Load Transport under Unsteady Flow Conditions
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000640
    treeJournal of Hydraulic Engineering:;2013:;Volume ( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian