YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigations on the Trajectory of Large Sandbags in Open Channel Flow

    Source: Journal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 012
    Author:
    M. Elkholy
    ,
    M. Hanif Chaudhry
    DOI: 10.1061/(ASCE)HY.1943-7900.0000614
    Publisher: American Society of Civil Engineers
    Abstract: Investigations undertaken to understand the mechanics of the motion of large sandbags and to compute their trajectories are reported in this paper, along with the details of the experimental setup and procedures. The motion of sandbags is recorded from the side of a flume by a high-definition charge-coupled device (CCD) camera, and the digital particle tracking velocimetry (DPTV) technique is used to track the motion of the bags. An equation is developed for the normalized maximum horizontal settling distance from the experimental data. It is found that the particle velocity normal to the flow depends mainly on the characteristic diameter of the particle and the Froude number of the flow, whereas the particle velocity in the streamwise direction shows lower dependency on the Froude number. Analysis of the particle tumbling shows that the Magnus force may be neglected for the purpose of modeling the trajectories of sandbags in uniform flows. A model of particle motion is developed by solving the Lagrangian equation numerically. Two approaches to computing the trajectory of sandbags are investigated. The results show that the approach in which the drag coefficient is varied based on the orientation of a particle gives better results than if the drag coefficient is kept constant and is based on the broadside orientation of the particle. The results also show that the change in the drag coefficient may be as low as 28% to as high as 76% based on the orientation of the particle with respect to the flow.
    • Download: (1.033Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigations on the Trajectory of Large Sandbags in Open Channel Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64474
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorM. Elkholy
    contributor authorM. Hanif Chaudhry
    date accessioned2017-05-08T21:51:31Z
    date available2017-05-08T21:51:31Z
    date copyrightDecember 2012
    date issued2012
    identifier other%28asce%29hy%2E1943-7900%2E0000641.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64474
    description abstractInvestigations undertaken to understand the mechanics of the motion of large sandbags and to compute their trajectories are reported in this paper, along with the details of the experimental setup and procedures. The motion of sandbags is recorded from the side of a flume by a high-definition charge-coupled device (CCD) camera, and the digital particle tracking velocimetry (DPTV) technique is used to track the motion of the bags. An equation is developed for the normalized maximum horizontal settling distance from the experimental data. It is found that the particle velocity normal to the flow depends mainly on the characteristic diameter of the particle and the Froude number of the flow, whereas the particle velocity in the streamwise direction shows lower dependency on the Froude number. Analysis of the particle tumbling shows that the Magnus force may be neglected for the purpose of modeling the trajectories of sandbags in uniform flows. A model of particle motion is developed by solving the Lagrangian equation numerically. Two approaches to computing the trajectory of sandbags are investigated. The results show that the approach in which the drag coefficient is varied based on the orientation of a particle gives better results than if the drag coefficient is kept constant and is based on the broadside orientation of the particle. The results also show that the change in the drag coefficient may be as low as 28% to as high as 76% based on the orientation of the particle with respect to the flow.
    publisherAmerican Society of Civil Engineers
    titleInvestigations on the Trajectory of Large Sandbags in Open Channel Flow
    typeJournal Paper
    journal volume138
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000614
    treeJournal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian