YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixing of Multiple Buoyant Jets

    Source: Journal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 012
    Author:
    Joseph H. W. Lee
    DOI: 10.1061/(ASCE)HY.1943-7900.0000560
    Publisher: American Society of Civil Engineers
    Abstract: Multiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.
    • Download: (466.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixing of Multiple Buoyant Jets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64417
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJoseph H. W. Lee
    date accessioned2017-05-08T21:51:26Z
    date available2017-05-08T21:51:26Z
    date copyrightDecember 2012
    date issued2012
    identifier other%28asce%29hy%2E1943-7900%2E0000586.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64417
    description abstractMultiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.
    publisherAmerican Society of Civil Engineers
    titleMixing of Multiple Buoyant Jets
    typeJournal Paper
    journal volume138
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000560
    treeJournal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian