YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Orifice Spillway Aerator: Hydraulic Design

    Source: Journal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 006
    Author:
    V. V. Bhosekar
    ,
    V. Jothiprakash
    ,
    P. B. Deolalikar
    DOI: 10.1061/(ASCE)HY.1943-7900.0000548
    Publisher: American Society of Civil Engineers
    Abstract: Orifice spillways are in vogue for the dams in the hilly regions where the spillway has to serve the dual function of flood disposal and flushing of sediment through the reservoir. Deep-seated orifice spillways are subjected to cavitation damage as the cavitation index drops below the critical cavitation index of 0.2 because of negative pressures on the profile and high flow velocities. Aerators are provided for mitigating cavitation damage. Design guidelines for aerator of orifice spillways are scanty and not reported much in the literature so far; thus, there still remains gray area in the field of spillway aerator design. The present study investigates the performance of an offset aerator with and without a ramp for deep-seated orifice spillway on a physical and numerical model. Performance of the aerator for varying discharges, heads, and gate openings is studied for varying cavity subpressures. Results with respect to jet length, cavity subpressure and air entrainment coefficients are presented in the form of nondimensional plots. From this study, the nondimensional jet length is in the range of 2 to 35 and increases as the cavity subpressure, approaches atmospheric pressure. It is also found that the air entrainment increases with increase in Froude number, ramp height and cavity pressure. From the present study results, equations for jet length and air entrainment coefficient are developed and are presented for the orifice spillway aerator.
    • Download: (1.021Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Orifice Spillway Aerator: Hydraulic Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64404
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorV. V. Bhosekar
    contributor authorV. Jothiprakash
    contributor authorP. B. Deolalikar
    date accessioned2017-05-08T21:51:25Z
    date available2017-05-08T21:51:25Z
    date copyrightJune 2012
    date issued2012
    identifier other%28asce%29hy%2E1943-7900%2E0000573.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64404
    description abstractOrifice spillways are in vogue for the dams in the hilly regions where the spillway has to serve the dual function of flood disposal and flushing of sediment through the reservoir. Deep-seated orifice spillways are subjected to cavitation damage as the cavitation index drops below the critical cavitation index of 0.2 because of negative pressures on the profile and high flow velocities. Aerators are provided for mitigating cavitation damage. Design guidelines for aerator of orifice spillways are scanty and not reported much in the literature so far; thus, there still remains gray area in the field of spillway aerator design. The present study investigates the performance of an offset aerator with and without a ramp for deep-seated orifice spillway on a physical and numerical model. Performance of the aerator for varying discharges, heads, and gate openings is studied for varying cavity subpressures. Results with respect to jet length, cavity subpressure and air entrainment coefficients are presented in the form of nondimensional plots. From this study, the nondimensional jet length is in the range of 2 to 35 and increases as the cavity subpressure, approaches atmospheric pressure. It is also found that the air entrainment increases with increase in Froude number, ramp height and cavity pressure. From the present study results, equations for jet length and air entrainment coefficient are developed and are presented for the orifice spillway aerator.
    publisherAmerican Society of Civil Engineers
    titleOrifice Spillway Aerator: Hydraulic Design
    typeJournal Paper
    journal volume138
    journal issue6
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000548
    treeJournal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian