YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    MPS-Based Mesh-Free Particle Method for Modeling Open-Channel Flows

    Source: Journal of Hydraulic Engineering:;2011:;Volume ( 137 ):;issue: 011
    Author:
    Ahmad Shakibaeinia
    ,
    Yee-Chung Jin
    DOI: 10.1061/(ASCE)HY.1943-7900.0000394
    Publisher: American Society of Civil Engineers
    Abstract: Dealing with large deformation and fragmentation of geometries and interfaces (e.g., free surfaces), the regular mesh-based Eulerian methods, such as finite-element and finite-difference methods, have difficulties in fluid-flow modeling. Recently, studies have focused on a new generation of numerical methods called mesh-free particle (Lagrangian) methods. In this study, a mesh-free particle method based on the moving-particle semi-implicit (MPS) particle-interaction model has been developed for simulation of open-channel flow. The model is able to simulate viscous fluid flow with large deformation and fragmentation of free surface in practical fields. Moreover, the model is capable of modeling open-channel problems with both inflow and outflow and inconstant numbers of particles. The model has been validated and applied to some common sample problems. The results show the reasonable accuracy of the model. The final model is capable of modeling free-surface deformation and fragmentation as well as accurate calculation of velocities in open channels.
    • Download: (479.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      MPS-Based Mesh-Free Particle Method for Modeling Open-Channel Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64240
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorAhmad Shakibaeinia
    contributor authorYee-Chung Jin
    date accessioned2017-05-08T21:51:06Z
    date available2017-05-08T21:51:06Z
    date copyrightNovember 2011
    date issued2011
    identifier other%28asce%29hy%2E1943-7900%2E0000420.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64240
    description abstractDealing with large deformation and fragmentation of geometries and interfaces (e.g., free surfaces), the regular mesh-based Eulerian methods, such as finite-element and finite-difference methods, have difficulties in fluid-flow modeling. Recently, studies have focused on a new generation of numerical methods called mesh-free particle (Lagrangian) methods. In this study, a mesh-free particle method based on the moving-particle semi-implicit (MPS) particle-interaction model has been developed for simulation of open-channel flow. The model is able to simulate viscous fluid flow with large deformation and fragmentation of free surface in practical fields. Moreover, the model is capable of modeling open-channel problems with both inflow and outflow and inconstant numbers of particles. The model has been validated and applied to some common sample problems. The results show the reasonable accuracy of the model. The final model is capable of modeling free-surface deformation and fragmentation as well as accurate calculation of velocities in open channels.
    publisherAmerican Society of Civil Engineers
    titleMPS-Based Mesh-Free Particle Method for Modeling Open-Channel Flows
    typeJournal Paper
    journal volume137
    journal issue11
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000394
    treeJournal of Hydraulic Engineering:;2011:;Volume ( 137 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian