YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    SWAN-Mud: Engineering Model for Mud-Induced Wave Damping

    Source: Journal of Hydraulic Engineering:;2011:;Volume ( 137 ):;issue: 009
    Author:
    W. M. Kranenburg
    ,
    J. C. Winterwerp
    ,
    G. J. de Boer
    ,
    J. M. Cornelisse
    ,
    M. Zijlema
    DOI: 10.1061/(ASCE)HY.1943-7900.0000370
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes the implementation of a new dispersion relation and energy-dissipation equation obtained from a viscous two-layer model schematization in the state-of-the-art wave forecasting model SWAN to simulate wave damping in coastal areas by fluid mud deposits. This new dispersion relation is derived for a nonviscous, nonhydrostatic upper layer and a viscous, hydrostatic lower layer, covering most conditions encountered in nature. An algorithm is developed for a robust numerical solution of this new implicit dispersion relation through proper starting values in the iteration procedure. The implementation is tested against a series of analytical solutions and three schematic test cases. Next, four dispersion relations published in the literature are evaluated and compared with the new dispersion relation. The solution of the dispersion relations forms a multidimensional space. Comparison of the various model solutions through one-dimensional graphs can therefore become quite misleading, as shown in the discussion of a two-dimensional representation of the solution space, explaining for instance the variation in ambient conditions at which maximum wave damping is to be expected. The various models have been developed for a variety of conditions, such as shallow and deep water and shallow and thick mud layers; the various models agree well in their domain of applicability, but they show significant deviations when used outside their domain. Because the ambient and mud conditions may vary considerable in space and time at a particular site, the use of the new model is advocated because it covers most water depths and fluid mud thicknesses encountered in nature. The strength of the new SWAN-mud model lies in its large-scale applicability, assessing the two-dimensional evolution of wave fields in coastal areas. Therefore, the new implementation is evaluated with respect to the behavior of waves on a sloping seabed, representing real-world coasts. In all cases, the new SWAN-mud model behaves satisfactorily; a critical remaining issue, though, is the assessment of the relevant fluid mud parameters.
    • Download: (2.885Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      SWAN-Mud: Engineering Model for Mud-Induced Wave Damping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64214
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorW. M. Kranenburg
    contributor authorJ. C. Winterwerp
    contributor authorG. J. de Boer
    contributor authorJ. M. Cornelisse
    contributor authorM. Zijlema
    date accessioned2017-05-08T21:51:04Z
    date available2017-05-08T21:51:04Z
    date copyrightSeptember 2011
    date issued2011
    identifier other%28asce%29hy%2E1943-7900%2E0000395.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64214
    description abstractThis paper describes the implementation of a new dispersion relation and energy-dissipation equation obtained from a viscous two-layer model schematization in the state-of-the-art wave forecasting model SWAN to simulate wave damping in coastal areas by fluid mud deposits. This new dispersion relation is derived for a nonviscous, nonhydrostatic upper layer and a viscous, hydrostatic lower layer, covering most conditions encountered in nature. An algorithm is developed for a robust numerical solution of this new implicit dispersion relation through proper starting values in the iteration procedure. The implementation is tested against a series of analytical solutions and three schematic test cases. Next, four dispersion relations published in the literature are evaluated and compared with the new dispersion relation. The solution of the dispersion relations forms a multidimensional space. Comparison of the various model solutions through one-dimensional graphs can therefore become quite misleading, as shown in the discussion of a two-dimensional representation of the solution space, explaining for instance the variation in ambient conditions at which maximum wave damping is to be expected. The various models have been developed for a variety of conditions, such as shallow and deep water and shallow and thick mud layers; the various models agree well in their domain of applicability, but they show significant deviations when used outside their domain. Because the ambient and mud conditions may vary considerable in space and time at a particular site, the use of the new model is advocated because it covers most water depths and fluid mud thicknesses encountered in nature. The strength of the new SWAN-mud model lies in its large-scale applicability, assessing the two-dimensional evolution of wave fields in coastal areas. Therefore, the new implementation is evaluated with respect to the behavior of waves on a sloping seabed, representing real-world coasts. In all cases, the new SWAN-mud model behaves satisfactorily; a critical remaining issue, though, is the assessment of the relevant fluid mud parameters.
    publisherAmerican Society of Civil Engineers
    titleSWAN-Mud: Engineering Model for Mud-Induced Wave Damping
    typeJournal Paper
    journal volume137
    journal issue9
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000370
    treeJournal of Hydraulic Engineering:;2011:;Volume ( 137 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian