YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bridge Pier Scour under Flood Waves

    Source: Journal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 010
    Author:
    Willi H. Hager
    ,
    Jens Unger
    DOI: 10.1061/(ASCE)HY.1943-7900.0000281
    Publisher: American Society of Civil Engineers
    Abstract: The effect of a single-peaked flood wave on pier scour is investigated both theoretically and experimentally. The conditions considered involve clear-water scour of a cohesionless material of given median sediment size and sediment nonuniformity, an approach flow characterized by a flow depth and velocity, a circular-shaped cylindrical bridge pier, and a flood hydrograph defined by its time to peak and peak discharge. A previously proposed formula for scour advance under a constant discharge was applied to the unsteady approach flow. The generalized temporal scour development along with the end scour depth are presented in terms of mainly the densimetric particle Froude number based on the maximum approach flow velocity and the median sediment size. The effect of the remaining parameters on the end scour depth is discussed and predictions are demonstrated to be essentially in agreement with model observations.
    • Download: (806.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bridge Pier Scour under Flood Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64117
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorWilli H. Hager
    contributor authorJens Unger
    date accessioned2017-05-08T21:50:56Z
    date available2017-05-08T21:50:56Z
    date copyrightOctober 2010
    date issued2010
    identifier other%28asce%29hy%2E1943-7900%2E0000304.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64117
    description abstractThe effect of a single-peaked flood wave on pier scour is investigated both theoretically and experimentally. The conditions considered involve clear-water scour of a cohesionless material of given median sediment size and sediment nonuniformity, an approach flow characterized by a flow depth and velocity, a circular-shaped cylindrical bridge pier, and a flood hydrograph defined by its time to peak and peak discharge. A previously proposed formula for scour advance under a constant discharge was applied to the unsteady approach flow. The generalized temporal scour development along with the end scour depth are presented in terms of mainly the densimetric particle Froude number based on the maximum approach flow velocity and the median sediment size. The effect of the remaining parameters on the end scour depth is discussed and predictions are demonstrated to be essentially in agreement with model observations.
    publisherAmerican Society of Civil Engineers
    titleBridge Pier Scour under Flood Waves
    typeJournal Paper
    journal volume136
    journal issue10
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000281
    treeJournal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian