YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laboratory Measurements on Turbulent Pressure Fluctuations in and above Gravel Beds

    Source: Journal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 010
    Author:
    Martin Detert
    ,
    Volker Weitbrecht
    ,
    Gerhard H. Jirka
    DOI: 10.1061/(ASCE)HY.1943-7900.0000251
    Publisher: American Society of Civil Engineers
    Abstract: The statistics of pressure fluctuations above and within three types of porous granular beds such as in gravel bed streams, rivers, and man-made canals are investigated by data gained via laboratory flume experiments. The flow conditions examined include a diversity of hydrodynamic loads that increase up to the point where single grains are moving from time to time, without causing severe modification to the bed texture and the related positions of the pressure sensors. Analysis is performed by means of histograms and spectral techniques and vertical intensity profiles. Two simplified equations are found that describe the vertical decrease for the standard deviation of the measured fluctuations indicating drag and lift, respectively, nondimensionalized by the mean bed shear stress. The former fluctuation is described by a crude linear fit, whereas the latter clearly shows that the lift intensity decreases exponentially in the porous bed with a decay distance of one to two times the equivalent grain roughness. Within the subsurface layer the standard deviation reaches a nonzero constant, mainly dominated by long-wave pressure fields that are convected in the outer flow. These findings can be used in future sediment transport models that use force balance approaches to determine incipient motion conditions.
    • Download: (703.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laboratory Measurements on Turbulent Pressure Fluctuations in and above Gravel Beds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/64084
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMartin Detert
    contributor authorVolker Weitbrecht
    contributor authorGerhard H. Jirka
    date accessioned2017-05-08T21:50:53Z
    date available2017-05-08T21:50:53Z
    date copyrightOctober 2010
    date issued2010
    identifier other%28asce%29hy%2E1943-7900%2E0000274.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64084
    description abstractThe statistics of pressure fluctuations above and within three types of porous granular beds such as in gravel bed streams, rivers, and man-made canals are investigated by data gained via laboratory flume experiments. The flow conditions examined include a diversity of hydrodynamic loads that increase up to the point where single grains are moving from time to time, without causing severe modification to the bed texture and the related positions of the pressure sensors. Analysis is performed by means of histograms and spectral techniques and vertical intensity profiles. Two simplified equations are found that describe the vertical decrease for the standard deviation of the measured fluctuations indicating drag and lift, respectively, nondimensionalized by the mean bed shear stress. The former fluctuation is described by a crude linear fit, whereas the latter clearly shows that the lift intensity decreases exponentially in the porous bed with a decay distance of one to two times the equivalent grain roughness. Within the subsurface layer the standard deviation reaches a nonzero constant, mainly dominated by long-wave pressure fields that are convected in the outer flow. These findings can be used in future sediment transport models that use force balance approaches to determine incipient motion conditions.
    publisherAmerican Society of Civil Engineers
    titleLaboratory Measurements on Turbulent Pressure Fluctuations in and above Gravel Beds
    typeJournal Paper
    journal volume136
    journal issue10
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000251
    treeJournal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian