Assessment of the Effectiveness of a Constructed Compound Channel River Restoration Project on an Incised StreamSource: Journal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 012Author:Michael L. MacWilliams Jr.
,
Mark R. Tompkins
,
Robert L. Street
,
G. Mathias Kondolf
,
Peter K. Kitanidis
DOI: 10.1061/(ASCE)HY.1943-7900.0000196Publisher: American Society of Civil Engineers
Abstract: Compound channels are often constructed in restoration projects on rivers and streams that have been channelized or are deeply incised. This design allows for flow over a wider cross-sectional area during high flows and is expected to reduce both flow velocities and bed-shear stresses in the channel during high flows. Using a compound channel restoration project on Tassajara Creek as a case study, the effectiveness of a constructed compound channel in reducing channel velocities and bed-shear stresses during high flow events was tested in two ways. First, since this is an a posteriori analysis, postproject surveys and assessments of the project are used to demonstrate the geomorphic and ecological benefits of the constructed compound channel for reducing further channel incision, improving channel stability, and enhancing native riparian vegetation, while still providing conveyance capacity for design flood flows. Second, the effectiveness of a constructed compound channel in reducing channel velocities and bed-shear stresses during high flow events is evaluated using both the one-dimensional (1D) model, HEC-RAS, and the three-dimensional (3D) numerical model, UnTRIM. This analysis demonstrates that the 1D analysis does not accurately portray the benefits of the compound channel, and is therefore not a suitable tool for evaluating the effectiveness of compound channel designs. These results demonstrate the advantages of using a 3D model and make a strong case for the implementation of more detailed hydrodynamic modeling in evaluating the suitability of restoration alternatives to improve the planning and design of river restoration projects.
|
Collections
Show full item record
contributor author | Michael L. MacWilliams Jr. | |
contributor author | Mark R. Tompkins | |
contributor author | Robert L. Street | |
contributor author | G. Mathias Kondolf | |
contributor author | Peter K. Kitanidis | |
date accessioned | 2017-05-08T21:50:44Z | |
date available | 2017-05-08T21:50:44Z | |
date copyright | December 2010 | |
date issued | 2010 | |
identifier other | %28asce%29hy%2E1943-7900%2E0000219.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/64023 | |
description abstract | Compound channels are often constructed in restoration projects on rivers and streams that have been channelized or are deeply incised. This design allows for flow over a wider cross-sectional area during high flows and is expected to reduce both flow velocities and bed-shear stresses in the channel during high flows. Using a compound channel restoration project on Tassajara Creek as a case study, the effectiveness of a constructed compound channel in reducing channel velocities and bed-shear stresses during high flow events was tested in two ways. First, since this is an a posteriori analysis, postproject surveys and assessments of the project are used to demonstrate the geomorphic and ecological benefits of the constructed compound channel for reducing further channel incision, improving channel stability, and enhancing native riparian vegetation, while still providing conveyance capacity for design flood flows. Second, the effectiveness of a constructed compound channel in reducing channel velocities and bed-shear stresses during high flow events is evaluated using both the one-dimensional (1D) model, HEC-RAS, and the three-dimensional (3D) numerical model, UnTRIM. This analysis demonstrates that the 1D analysis does not accurately portray the benefits of the compound channel, and is therefore not a suitable tool for evaluating the effectiveness of compound channel designs. These results demonstrate the advantages of using a 3D model and make a strong case for the implementation of more detailed hydrodynamic modeling in evaluating the suitability of restoration alternatives to improve the planning and design of river restoration projects. | |
publisher | American Society of Civil Engineers | |
title | Assessment of the Effectiveness of a Constructed Compound Channel River Restoration Project on an Incised Stream | |
type | Journal Paper | |
journal volume | 136 | |
journal issue | 12 | |
journal title | Journal of Hydraulic Engineering | |
identifier doi | 10.1061/(ASCE)HY.1943-7900.0000196 | |
tree | Journal of Hydraulic Engineering:;2010:;Volume ( 136 ):;issue: 012 | |
contenttype | Fulltext |