YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Zero-Valent Iron-Assisted Autotrophic Denitrification

    Source: Journal of Environmental Engineering:;2005:;Volume ( 131 ):;issue: 008
    Author:
    Susham Biswas
    ,
    Purnendu Bose
    DOI: 10.1061/(ASCE)0733-9372(2005)131:8(1212)
    Publisher: American Society of Civil Engineers
    Abstract: Porous reactive barriers containing metallic iron and hydrogenotrophic denitrifying microorganisms may potentially be suitable for in-situ remediation of nitrate-contaminated groundwater resources. The main objective of the research described here was to determine the type and concentration of metallic iron to be used in such reactive barriers so that ammonia formation through metallic iron-assisted abiotic nitrate reduction was minimized, while a reasonable rate of biological denitrification, sustained by hydrogen produced through metallic iron corrosion, was maintained. Initial experiments included the demonstration of autotrophic denitrification supported by externally supplied hydrogen, either from a gas cylinder or generated through anaerobic corrosion of metallic iron. Next, the effect of iron type on abiotic nitrate reduction was studied, and among those types of iron tested, steel wool, with its relatively low surface-area-to-weight ratio, was identified as the material that exhibited the least propensity to abiotically reduce nitrate. Further, long-term experiments were carried out in batch reactors to determine the effect of steel wool surface area on the extent of denitrification and ammonia production. Finally, experiments carried out in up-flow column reactors containing sand and varying quantities of steel wool demonstrated biological denitrification occurring in such systems. Based on the results of the final set of experiments, it appeared that to minimize ammonia production, the steel-wool concentration up-flow columns must be even below the lowest value—0.5 g steel wool added to
    • Download: (356.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Zero-Valent Iron-Assisted Autotrophic Denitrification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63965
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorSusham Biswas
    contributor authorPurnendu Bose
    date accessioned2017-05-08T21:50:40Z
    date available2017-05-08T21:50:40Z
    date copyrightAugust 2005
    date issued2005
    identifier other%28asce%290733-9372%282005%29131%3A8%281212%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63965
    description abstractPorous reactive barriers containing metallic iron and hydrogenotrophic denitrifying microorganisms may potentially be suitable for in-situ remediation of nitrate-contaminated groundwater resources. The main objective of the research described here was to determine the type and concentration of metallic iron to be used in such reactive barriers so that ammonia formation through metallic iron-assisted abiotic nitrate reduction was minimized, while a reasonable rate of biological denitrification, sustained by hydrogen produced through metallic iron corrosion, was maintained. Initial experiments included the demonstration of autotrophic denitrification supported by externally supplied hydrogen, either from a gas cylinder or generated through anaerobic corrosion of metallic iron. Next, the effect of iron type on abiotic nitrate reduction was studied, and among those types of iron tested, steel wool, with its relatively low surface-area-to-weight ratio, was identified as the material that exhibited the least propensity to abiotically reduce nitrate. Further, long-term experiments were carried out in batch reactors to determine the effect of steel wool surface area on the extent of denitrification and ammonia production. Finally, experiments carried out in up-flow column reactors containing sand and varying quantities of steel wool demonstrated biological denitrification occurring in such systems. Based on the results of the final set of experiments, it appeared that to minimize ammonia production, the steel-wool concentration up-flow columns must be even below the lowest value—0.5 g steel wool added to
    publisherAmerican Society of Civil Engineers
    titleZero-Valent Iron-Assisted Autotrophic Denitrification
    typeJournal Paper
    journal volume131
    journal issue8
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2005)131:8(1212)
    treeJournal of Environmental Engineering:;2005:;Volume ( 131 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian