YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    Author:
    Richard Arsenault
    ,
    Annie Poulin
    ,
    Pascal Côté
    ,
    François Brissette
    DOI: 10.1061/(ASCE)HE.1943-5584.0000938
    Publisher: American Society of Civil Engineers
    Abstract: Ten stochastic optimization methods—adaptive simulated annealing (ASA), covariance matrix adaptation evolution strategy (CMAES), cuckoo search (CS), dynamically dimensioned search (DDS), differential evolution (DE), genetic algorithm (GA), harmony search (HS), pattern search (PS), particle swarm optimization (PSO), and shuffled complex evolution–University of Arizona (SCE–UA)—were used to calibrate parameter sets for three hydrological models on 10 different basins. Optimization algorithm performance was compared for each of the available basin-model combinations. For each model-basin pair, 40 calibrations were run with the 10 algorithms. Results were tested for statistical significance using a multicomparison procedure based on Friedman and Kruskal-Wallis tests. A dispersion metric was used to evaluate the fitness landscape underlying the structure on each test case. The trials revealed that the dimensionality and general fitness landscape characteristics of the model calibration problem are important when considering the use of an automatic optimization method. The ASA, CMAES, and DDS algorithms were either as good as or better than the other methods for finding the lowest minimum, with ASA being consistently among the best. The SCE–UA method performs better when the model complexity is reduced, whereas the opposite is true for DDS. Convergence speed was also studied, and the same three methods (CMAES, DDS, and ASA) were shown to converge faster than the other methods. The SCE–UA method converged nearly as fast as the best methods when the model with the smallest parameter space was used but was not as worthy in the higher-dimension parameter space of the other models. Convergence speed has little impact on algorithm efficiency. The methods offering the worst performance were DE, CS, GA, HS, and PSO, although they did manage to find good local minima in some trials. However, the other available methods generally outperformed these algorithms.
    • Download: (494.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63814
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorRichard Arsenault
    contributor authorAnnie Poulin
    contributor authorPascal Côté
    contributor authorFrançois Brissette
    date accessioned2017-05-08T21:50:26Z
    date available2017-05-08T21:50:26Z
    date copyrightJuly 2014
    date issued2014
    identifier other%28asce%29hy%2E1943-7900%2E0000007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63814
    description abstractTen stochastic optimization methods—adaptive simulated annealing (ASA), covariance matrix adaptation evolution strategy (CMAES), cuckoo search (CS), dynamically dimensioned search (DDS), differential evolution (DE), genetic algorithm (GA), harmony search (HS), pattern search (PS), particle swarm optimization (PSO), and shuffled complex evolution–University of Arizona (SCE–UA)—were used to calibrate parameter sets for three hydrological models on 10 different basins. Optimization algorithm performance was compared for each of the available basin-model combinations. For each model-basin pair, 40 calibrations were run with the 10 algorithms. Results were tested for statistical significance using a multicomparison procedure based on Friedman and Kruskal-Wallis tests. A dispersion metric was used to evaluate the fitness landscape underlying the structure on each test case. The trials revealed that the dimensionality and general fitness landscape characteristics of the model calibration problem are important when considering the use of an automatic optimization method. The ASA, CMAES, and DDS algorithms were either as good as or better than the other methods for finding the lowest minimum, with ASA being consistently among the best. The SCE–UA method performs better when the model complexity is reduced, whereas the opposite is true for DDS. Convergence speed was also studied, and the same three methods (CMAES, DDS, and ASA) were shown to converge faster than the other methods. The SCE–UA method converged nearly as fast as the best methods when the model with the smallest parameter space was used but was not as worthy in the higher-dimension parameter space of the other models. Convergence speed has little impact on algorithm efficiency. The methods offering the worst performance were DE, CS, GA, HS, and PSO, although they did manage to find good local minima in some trials. However, the other available methods generally outperformed these algorithms.
    publisherAmerican Society of Civil Engineers
    titleComparison of Stochastic Optimization Algorithms in Hydrological Model Calibration
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000938
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian