YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying the Uncertainty of Design Floods under Nonstationary Conditions

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    Author:
    Jayantha Obeysekera
    ,
    Jose D. Salas
    DOI: 10.1061/(ASCE)HE.1943-5584.0000931
    Publisher: American Society of Civil Engineers
    Abstract: Estimating design quantiles for extreme floods in river basins under nonstationary conditions is an emerging field. Nonstationarities could arise from a variety of human and natural factors such as urbanization and climate change. Concepts of return period, design quantile (return level), and risk have already been developed for situations in which increasing or decreasing trends and abrupt shifts in extreme events are present. Because of limited data records, sampling variability, model errors, and the errors in projections into the future, significant uncertainties in the estimates of design floods of future projects will arise. To address the issue of uncertainty resulting from limited sample size of the observations, three methods have been developed for computing confidence intervals for the design quantile corresponding to a desired return period under a nonstationary framework, including (a) delta, (b) bootstrap, and (c) profile likelihood methods. These methods have been developed assuming a generalized extreme value distribution with nonstationary parameters. The applicability and comparison of the proposed methods for determining the confidence interval of quantiles have been demonstrated by using the annual flood maxima of the Assunpink Creek in New Jersey. The delta method, with numerically derived local derivatives, and the approximate bootstrap can be computationally efficient. The profile likelihood method, which is known to be more accurate, is quite burdensome computationally but provides more realistic asymmetric confidence intervals.
    • Download: (543.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying the Uncertainty of Design Floods under Nonstationary Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63810
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorJayantha Obeysekera
    contributor authorJose D. Salas
    date accessioned2017-05-08T21:50:26Z
    date available2017-05-08T21:50:26Z
    date copyrightJuly 2014
    date issued2014
    identifier other%28asce%29hy%2E1943-7900%2E0000003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63810
    description abstractEstimating design quantiles for extreme floods in river basins under nonstationary conditions is an emerging field. Nonstationarities could arise from a variety of human and natural factors such as urbanization and climate change. Concepts of return period, design quantile (return level), and risk have already been developed for situations in which increasing or decreasing trends and abrupt shifts in extreme events are present. Because of limited data records, sampling variability, model errors, and the errors in projections into the future, significant uncertainties in the estimates of design floods of future projects will arise. To address the issue of uncertainty resulting from limited sample size of the observations, three methods have been developed for computing confidence intervals for the design quantile corresponding to a desired return period under a nonstationary framework, including (a) delta, (b) bootstrap, and (c) profile likelihood methods. These methods have been developed assuming a generalized extreme value distribution with nonstationary parameters. The applicability and comparison of the proposed methods for determining the confidence interval of quantiles have been demonstrated by using the annual flood maxima of the Assunpink Creek in New Jersey. The delta method, with numerically derived local derivatives, and the approximate bootstrap can be computationally efficient. The profile likelihood method, which is known to be more accurate, is quite burdensome computationally but provides more realistic asymmetric confidence intervals.
    publisherAmerican Society of Civil Engineers
    titleQuantifying the Uncertainty of Design Floods under Nonstationary Conditions
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000931
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian