YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    Author:
    Mohsen Asadnia
    ,
    Lloyd H. C. Chua
    ,
    X. S. Qin
    ,
    Amin Talei
    DOI: 10.1061/(ASCE)HE.1943-5584.0000927
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui Watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate gradient, gradient descent, and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from the LM-NN, and these results were then compared with those from PSO-based ANNs, including the conventional PSO neural network (CPSONN) and the improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. The results show that the PSO-based ANNs performed better than the LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing data set for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multiparameter (rainfall and water level) inputs, the RMSE of the testing data set for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.
    • Download: (11.02Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63806
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMohsen Asadnia
    contributor authorLloyd H. C. Chua
    contributor authorX. S. Qin
    contributor authorAmin Talei
    date accessioned2017-05-08T21:50:25Z
    date available2017-05-08T21:50:25Z
    date copyrightJuly 2014
    date issued2014
    identifier other%28asce%29he%2E1943-5584%2E0000958.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63806
    description abstractThis paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui Watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate gradient, gradient descent, and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from the LM-NN, and these results were then compared with those from PSO-based ANNs, including the conventional PSO neural network (CPSONN) and the improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. The results show that the PSO-based ANNs performed better than the LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing data set for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multiparameter (rainfall and water level) inputs, the RMSE of the testing data set for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.
    publisherAmerican Society of Civil Engineers
    titleImproved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000927
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian