YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvement of Rainfall-Runoff Simulations Using the Runoff-Scale Weighting Method

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    Author:
    Machine Hsie
    ,
    Shih-Wei Yan
    ,
    Nang-Fei Pan
    DOI: 10.1061/(ASCE)HE.1943-5584.0000921
    Publisher: American Society of Civil Engineers
    Abstract: Objective selection and tradeoffs have always been key central issues in rainfall-runoff models. In general, precision for high and low flows cannot be achieved or considered concurrently. Combination forecasts are potentially capable of producing more suitable or superior results through appropriate methods. In this study, we propose an automatic method, a runoff-scale weighting method (RSWM), to solve issues regarding flow precision trade-offs. Objective functions that emphasize precision at various flows were used to conduct combination forecasts and validate the effectiveness of this method. The results indicated that combination forecasting is capable of improving precision during all flow stages to further enhance model effectiveness. In addition, we used the fuzzy multiobjective function simple-average (FMOF-SA) and fuzzy multiobjective function-low (FMOF-low) as reference flows to test the robustness of parameters to determine whether the RSWM is affected by reference flows. The results indicated that the FMOF-low is relatively more robust than the FMOF-SA, although both had only a slight influence on the final results. According to the final results, the mean absolute relative residual of most flow stages is approximately 0.2, which shows that the RSWM can be applied to various runoff conditions.
    • Download: (50.97Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvement of Rainfall-Runoff Simulations Using the Runoff-Scale Weighting Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63802
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMachine Hsie
    contributor authorShih-Wei Yan
    contributor authorNang-Fei Pan
    date accessioned2017-05-08T21:50:24Z
    date available2017-05-08T21:50:24Z
    date copyrightJuly 2014
    date issued2014
    identifier other%28asce%29he%2E1943-5584%2E0000953.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63802
    description abstractObjective selection and tradeoffs have always been key central issues in rainfall-runoff models. In general, precision for high and low flows cannot be achieved or considered concurrently. Combination forecasts are potentially capable of producing more suitable or superior results through appropriate methods. In this study, we propose an automatic method, a runoff-scale weighting method (RSWM), to solve issues regarding flow precision trade-offs. Objective functions that emphasize precision at various flows were used to conduct combination forecasts and validate the effectiveness of this method. The results indicated that combination forecasting is capable of improving precision during all flow stages to further enhance model effectiveness. In addition, we used the fuzzy multiobjective function simple-average (FMOF-SA) and fuzzy multiobjective function-low (FMOF-low) as reference flows to test the robustness of parameters to determine whether the RSWM is affected by reference flows. The results indicated that the FMOF-low is relatively more robust than the FMOF-SA, although both had only a slight influence on the final results. According to the final results, the mean absolute relative residual of most flow stages is approximately 0.2, which shows that the RSWM can be applied to various runoff conditions.
    publisherAmerican Society of Civil Engineers
    titleImprovement of Rainfall-Runoff Simulations Using the Runoff-Scale Weighting Method
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000921
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian