YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bivariate Frequency Analysis of Annual Maximum Rainfall Event Series in Seoul, Korea

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 006
    Author:
    Minkyu Park
    ,
    Chulsang Yoo
    ,
    Hyeonjun Kim
    ,
    Changhyun Jun
    DOI: 10.1061/(ASCE)HE.1943-5584.0000891
    Publisher: American Society of Civil Engineers
    Abstract: The return period of a rainfall event is estimated by the frequency analysis for a given rainfall duration. Thus, it is possible to derive different return periods with different rainfall durations for a given rainfall event. The longest derived return period is generally cited to represent the rainfall event. However, it is not clear if the longest derived return period is a representative measure of the given rainfall event. In this study, as a solution for this problem, a bivariate frequency analysis was introduced. As a first step, annual maximum rainfall events were selected by applying a bivariate exponential distribution. As an application, a total of 1,534 rainfall events observed in Seoul, Korea, over the last 46 years were analyzed. The annual maximum rainfall event series were then analyzed by applying a bivariate logistic model. The results were also compared with those from a conventional univariate frequency analysis. The findings of this study are summarized as follows: (1) the bivariate exponential distribution satisfactorily represented the duration and total rainfall depth data of all independent rainfall events, and the annually estimated parameters of the bivariate exponential distribution were more reasonable with respect to annual changes in the climatic conditions than those for the entire data period; (2) by using the bivariate logistic model, the return period was able to be assigned to each annual maximum rainfall event; and (3) rainfall quartiles of the univariate frequency analysis were bigger than those from the bivariate frequency analysis for rather short return periods of less than 30 years, but smaller for rather long return periods exceeding 100 years, primarily attributable to the smaller variance of the univariate annual maximum series.
    • Download: (4.902Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bivariate Frequency Analysis of Annual Maximum Rainfall Event Series in Seoul, Korea

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63777
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMinkyu Park
    contributor authorChulsang Yoo
    contributor authorHyeonjun Kim
    contributor authorChanghyun Jun
    date accessioned2017-05-08T21:50:16Z
    date available2017-05-08T21:50:16Z
    date copyrightJune 2014
    date issued2014
    identifier other%28asce%29he%2E1943-5584%2E0000920.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63777
    description abstractThe return period of a rainfall event is estimated by the frequency analysis for a given rainfall duration. Thus, it is possible to derive different return periods with different rainfall durations for a given rainfall event. The longest derived return period is generally cited to represent the rainfall event. However, it is not clear if the longest derived return period is a representative measure of the given rainfall event. In this study, as a solution for this problem, a bivariate frequency analysis was introduced. As a first step, annual maximum rainfall events were selected by applying a bivariate exponential distribution. As an application, a total of 1,534 rainfall events observed in Seoul, Korea, over the last 46 years were analyzed. The annual maximum rainfall event series were then analyzed by applying a bivariate logistic model. The results were also compared with those from a conventional univariate frequency analysis. The findings of this study are summarized as follows: (1) the bivariate exponential distribution satisfactorily represented the duration and total rainfall depth data of all independent rainfall events, and the annually estimated parameters of the bivariate exponential distribution were more reasonable with respect to annual changes in the climatic conditions than those for the entire data period; (2) by using the bivariate logistic model, the return period was able to be assigned to each annual maximum rainfall event; and (3) rainfall quartiles of the univariate frequency analysis were bigger than those from the bivariate frequency analysis for rather short return periods of less than 30 years, but smaller for rather long return periods exceeding 100 years, primarily attributable to the smaller variance of the univariate annual maximum series.
    publisherAmerican Society of Civil Engineers
    titleBivariate Frequency Analysis of Annual Maximum Rainfall Event Series in Seoul, Korea
    typeJournal Paper
    journal volume19
    journal issue6
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000891
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian