YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 004
    Author:
    Manish Kumar Goyal
    ,
    C. S. P. Ojha
    DOI: 10.1061/(ASCE)HE.1943-5584.0000795
    Publisher: American Society of Civil Engineers
    Abstract: Climate change scenarios generated by general circulation models (GCMs) have too coarse a spatial resolution to be useful in planning disaster risk reduction and climate change adaptation strategies at regional to river/lake basin scales. This paper investigates the performances of existing state-of-the-art rule induction and tree algorithms, namely, single conjunctive rule learner, decision table, M5P model tree, decision stump, and REPTree. Downscaling models are developed to obtain projections of mean monthly maximum and minimum temperatures (
    • Download: (20.87Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63702
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorManish Kumar Goyal
    contributor authorC. S. P. Ojha
    date accessioned2017-05-08T21:49:56Z
    date available2017-05-08T21:49:56Z
    date copyrightApril 2014
    date issued2014
    identifier other%28asce%29he%2E1943-5584%2E0000828.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63702
    description abstractClimate change scenarios generated by general circulation models (GCMs) have too coarse a spatial resolution to be useful in planning disaster risk reduction and climate change adaptation strategies at regional to river/lake basin scales. This paper investigates the performances of existing state-of-the-art rule induction and tree algorithms, namely, single conjunctive rule learner, decision table, M5P model tree, decision stump, and REPTree. Downscaling models are developed to obtain projections of mean monthly maximum and minimum temperatures (
    publisherAmerican Society of Civil Engineers
    titleEvaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000795
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian