YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 009
    Author:
    Vicky L. Freedman
    ,
    Rob Mackley
    ,
    Scott R. Waichler
    ,
    Jake Horner
    DOI: 10.1061/(ASCE)HE.1943-5584.0000720
    Publisher: American Society of Civil Engineers
    Abstract: In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is nonconsumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHPs are a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive-use metrics may need to be used for permit applications. For consumptive-use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a nonconsumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results reported in this paper show that distance drawdown methods for both analytical and numerical methods were generally unsuitable because they overpredicted the influence of the well system. Particle tracking yielded more reasonable results because flow paths demonstrated the probable impact on the flow system. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories, which could be performed with both analytical and numerical techniques. Capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a nonconsumptive GHP assessment.
    • Download: (1.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63625
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorVicky L. Freedman
    contributor authorRob Mackley
    contributor authorScott R. Waichler
    contributor authorJake Horner
    date accessioned2017-05-08T21:49:42Z
    date available2017-05-08T21:49:42Z
    date copyrightSeptember 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000741.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63625
    description abstractIn an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is nonconsumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHPs are a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive-use metrics may need to be used for permit applications. For consumptive-use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a nonconsumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results reported in this paper show that distance drawdown methods for both analytical and numerical methods were generally unsuitable because they overpredicted the influence of the well system. Particle tracking yielded more reasonable results because flow paths demonstrated the probable impact on the flow system. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories, which could be performed with both analytical and numerical techniques. Capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a nonconsumptive GHP assessment.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System
    typeJournal Paper
    journal volume18
    journal issue9
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000720
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian