YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measure of Correlation between River Flows Using the Copula-Entropy Method

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 012
    Author:
    Lu Chen
    ,
    Vijay P. Singh
    ,
    Shenglian Guo
    DOI: 10.1061/(ASCE)HE.1943-5584.0000714
    Publisher: American Society of Civil Engineers
    Abstract: Analysis of the dependence between the main stream and its upper tributaries is important for hydraulic design, flood prevention, and risk control. The concept of total correlation, computed by the copula-entropy method, was applied to measure the dependence. This method only needs to calculate the copula entropy instead of the marginal or joint entropy, which estimates the total correlation more directly and avoids the accumulation of systematic bias. To that end, bivariate and multivariate Archimedean and metaelliptical copulas were employed, and multiple-integration and Monte Carlo methods were used to calculate the copula entropy. The methodology was applied to the upper Yangtze River reach in China, which has five major tributaries: Jinsha, Min, Tuo, Jialing, and Wu. Results showed that the selected copulas fitted the empirical probability distributions satisfactorily. There was a significant difference in total correlation values, when different copula functions were used. The copula entropy, calculated using the multiple-integration and Monte Carlo methods, led to similar results. The total correlation among the rivers was not high, and the one between Min and Tuo Rivers was the largest. There was some dependence among Jinsha, Min, and Tuo rivers, which constitutes a threat to flood control by the Three Gorges Dam (TGD). The flows of the Jinsha, Jialing, Min, and Tuo rivers significantly influence the flood occurrence in the Yangtze River.
    • Download: (383.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measure of Correlation between River Flows Using the Copula-Entropy Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63618
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorLu Chen
    contributor authorVijay P. Singh
    contributor authorShenglian Guo
    date accessioned2017-05-08T21:49:41Z
    date available2017-05-08T21:49:41Z
    date copyrightDecember 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000736.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63618
    description abstractAnalysis of the dependence between the main stream and its upper tributaries is important for hydraulic design, flood prevention, and risk control. The concept of total correlation, computed by the copula-entropy method, was applied to measure the dependence. This method only needs to calculate the copula entropy instead of the marginal or joint entropy, which estimates the total correlation more directly and avoids the accumulation of systematic bias. To that end, bivariate and multivariate Archimedean and metaelliptical copulas were employed, and multiple-integration and Monte Carlo methods were used to calculate the copula entropy. The methodology was applied to the upper Yangtze River reach in China, which has five major tributaries: Jinsha, Min, Tuo, Jialing, and Wu. Results showed that the selected copulas fitted the empirical probability distributions satisfactorily. There was a significant difference in total correlation values, when different copula functions were used. The copula entropy, calculated using the multiple-integration and Monte Carlo methods, led to similar results. The total correlation among the rivers was not high, and the one between Min and Tuo Rivers was the largest. There was some dependence among Jinsha, Min, and Tuo rivers, which constitutes a threat to flood control by the Three Gorges Dam (TGD). The flows of the Jinsha, Jialing, Min, and Tuo rivers significantly influence the flood occurrence in the Yangtze River.
    publisherAmerican Society of Civil Engineers
    titleMeasure of Correlation between River Flows Using the Copula-Entropy Method
    typeJournal Paper
    journal volume18
    journal issue12
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000714
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian