YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. II: Model Application to Ungauged and Sparsely Gauged Watersheds

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 010
    Author:
    S. Kure
    ,
    S. Jang
    ,
    N. Ohara
    ,
    M. L. Kavvas
    ,
    Z. Q. Chen
    DOI: 10.1061/(ASCE)HE.1943-5584.0000701
    Publisher: American Society of Civil Engineers
    Abstract: The objective of this study is to evaluate the potential of the Watershed Environmental Hydrology Hydro-Climate Model (WEHY-HCM) for modeling runoff at ungauged or sparsely gauged watersheds. The WEHY-HCM employs an atmospheric module (fifth generation mesoscale model, MM5) that is coupled with its process-based watershed environmental hydrology (WEHY) module. In this study the atmospheric component of the WEHY-HCM was utilized for the dynamical downscaling of the coarse U.S. National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) historical global reanalysis atmospheric data over a foothills region in Northern California in order to reconstruct the historical hydro-climate data over four watersheds in the foothills region at 3 km grid scale at hourly intervals. The WEHY-HCM’s atmospheric module performance was evaluated by the comparison of model-reconstructed precipitation and air temperature against ground observations in time and space with satisfactory results. These results lead to the conclusion that WEHY-HCM may be useful at sparsely-gauged or ungauged watersheds for producing nonexistent atmospheric data as input to the modeling of surface and subsurface hydrologic processes at such watersheds. By means of the reconstructed atmospheric data as its input, the WEHY module of WEHY-HCM was then applied to the Sierra foothills region, encompassing Big Chico Creek (
    • Download: (700.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. II: Model Application to Ungauged and Sparsely Gauged Watersheds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63605
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorS. Kure
    contributor authorS. Jang
    contributor authorN. Ohara
    contributor authorM. L. Kavvas
    contributor authorZ. Q. Chen
    date accessioned2017-05-08T21:49:40Z
    date available2017-05-08T21:49:40Z
    date copyrightOctober 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000724.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63605
    description abstractThe objective of this study is to evaluate the potential of the Watershed Environmental Hydrology Hydro-Climate Model (WEHY-HCM) for modeling runoff at ungauged or sparsely gauged watersheds. The WEHY-HCM employs an atmospheric module (fifth generation mesoscale model, MM5) that is coupled with its process-based watershed environmental hydrology (WEHY) module. In this study the atmospheric component of the WEHY-HCM was utilized for the dynamical downscaling of the coarse U.S. National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) historical global reanalysis atmospheric data over a foothills region in Northern California in order to reconstruct the historical hydro-climate data over four watersheds in the foothills region at 3 km grid scale at hourly intervals. The WEHY-HCM’s atmospheric module performance was evaluated by the comparison of model-reconstructed precipitation and air temperature against ground observations in time and space with satisfactory results. These results lead to the conclusion that WEHY-HCM may be useful at sparsely-gauged or ungauged watersheds for producing nonexistent atmospheric data as input to the modeling of surface and subsurface hydrologic processes at such watersheds. By means of the reconstructed atmospheric data as its input, the WEHY module of WEHY-HCM was then applied to the Sierra foothills region, encompassing Big Chico Creek (
    publisherAmerican Society of Civil Engineers
    titleWEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. II: Model Application to Ungauged and Sparsely Gauged Watersheds
    typeJournal Paper
    journal volume18
    journal issue10
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000701
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian