YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Monovegetation Restoration Types on Soil Water Distribution and Balance on a Hillslope in Northern Loess Plateau of China

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 004
    Author:
    Xiaoli Fu
    ,
    Mingan Shao
    ,
    Xiaorong Wei
    ,
    Huimin Wang
    ,
    Chen Zeng
    DOI: 10.1061/(ASCE)HE.1943-5584.0000628
    Publisher: American Society of Civil Engineers
    Abstract: In the Loess Plateau of China, mosaic-vegetation restoration by converting cropland into fallow (to regenerate natural vegetations) and perennials performs well in soil erosion control. However, soil desiccation caused by the planted perennials threatens the sustainability of vegetation restoration. Understanding of soil water distribution and balance in monovegetation systems at hillslope scale is crucial for building a constructive mosaic-vegetation restoration pattern in the Northern Loess Plateau. The objectives in this study were to investigate effects of monovegetation restoration types on soil water distribution and balance and discuss the possible implications of the monovegetation hydrological properties for mosaic-vegetation pattern establishment at hillslope scale. In 2004, the authors chose a one-piece waste hillslope with uniform slope of 12° and established four monovegetation plots subjected to shrub, grass, fallow, and cropland. Shrub, grass, and fallow are the typical vegetation restoration types, whereas cropland presents the traditional land use. Soil water content profiles, down to 400–600 cm depth, along the hillslope were measured with a neutron moisture meter from May–October in 2004, 2008, and 2009. Results showed that the rainfall infiltration depth was approximately 100 cm for shrub and grass but exceeded 300 cm for fallow and cropland. Six growth years later, shrub, grass, and fallow depleted more soil water than cropland, in the amount of 288, 313, and 62 mm, respectively. Soil water depletion in shrub and grass resulted in dried soil layers at the depth of 100–260 cm and 100–360 cm. Water balance results indicated that soil water deficit occurred in June during the rain season. The authors observed that downhill-accumulation of soil water storage, down to 400 cm depth, existed for fallow and cropland in 2004 and 2009. However, 6 growth years of shrub and grass substantially weakened such soil water downhill-accumulation tendency. This fact alone suggests that a mosaic vegetation system of planting shrub/grass downhill and setting fallow uphill would be appropriate from a standpoint of maintaining the sustainable development of vegetation restoration in the study area. Further experiments should be performed to develop the mosaic-vegetation patterns meeting the interests of both erosion control and sustainability of vegetation restoration.
    • Download: (1.049Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Monovegetation Restoration Types on Soil Water Distribution and Balance on a Hillslope in Northern Loess Plateau of China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63526
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorXiaoli Fu
    contributor authorMingan Shao
    contributor authorXiaorong Wei
    contributor authorHuimin Wang
    contributor authorChen Zeng
    date accessioned2017-05-08T21:49:31Z
    date available2017-05-08T21:49:31Z
    date copyrightApril 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000649.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63526
    description abstractIn the Loess Plateau of China, mosaic-vegetation restoration by converting cropland into fallow (to regenerate natural vegetations) and perennials performs well in soil erosion control. However, soil desiccation caused by the planted perennials threatens the sustainability of vegetation restoration. Understanding of soil water distribution and balance in monovegetation systems at hillslope scale is crucial for building a constructive mosaic-vegetation restoration pattern in the Northern Loess Plateau. The objectives in this study were to investigate effects of monovegetation restoration types on soil water distribution and balance and discuss the possible implications of the monovegetation hydrological properties for mosaic-vegetation pattern establishment at hillslope scale. In 2004, the authors chose a one-piece waste hillslope with uniform slope of 12° and established four monovegetation plots subjected to shrub, grass, fallow, and cropland. Shrub, grass, and fallow are the typical vegetation restoration types, whereas cropland presents the traditional land use. Soil water content profiles, down to 400–600 cm depth, along the hillslope were measured with a neutron moisture meter from May–October in 2004, 2008, and 2009. Results showed that the rainfall infiltration depth was approximately 100 cm for shrub and grass but exceeded 300 cm for fallow and cropland. Six growth years later, shrub, grass, and fallow depleted more soil water than cropland, in the amount of 288, 313, and 62 mm, respectively. Soil water depletion in shrub and grass resulted in dried soil layers at the depth of 100–260 cm and 100–360 cm. Water balance results indicated that soil water deficit occurred in June during the rain season. The authors observed that downhill-accumulation of soil water storage, down to 400 cm depth, existed for fallow and cropland in 2004 and 2009. However, 6 growth years of shrub and grass substantially weakened such soil water downhill-accumulation tendency. This fact alone suggests that a mosaic vegetation system of planting shrub/grass downhill and setting fallow uphill would be appropriate from a standpoint of maintaining the sustainable development of vegetation restoration in the study area. Further experiments should be performed to develop the mosaic-vegetation patterns meeting the interests of both erosion control and sustainability of vegetation restoration.
    publisherAmerican Society of Civil Engineers
    titleEffects of Monovegetation Restoration Types on Soil Water Distribution and Balance on a Hillslope in Northern Loess Plateau of China
    typeJournal Paper
    journal volume18
    journal issue4
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000628
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian