YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of MLP-ANN Training Algorithms for Modeling Soil Pore-Water Pressure Responses to Rainfall

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 001
    Author:
    M. R. Mustafa
    ,
    R. B. Rezaur
    ,
    S. Saiedi
    ,
    H. Rahardjo
    ,
    M. H. Isa
    DOI: 10.1061/(ASCE)HE.1943-5584.0000599
    Publisher: American Society of Civil Engineers
    Abstract: Knowledge of pore-water pressure responses to rainfall is vital in slope failure and slope hydrological studies. The performance of four artificial neural network (ANN) training algorithms was evaluated to identify the training algorithm appropriate for modeling the dynamics of soil pore-water pressure responses to rainfall patterns using multilayer perceptron (MLP) ANN. The ANN model comprised eight neurons in the input layer, four neurons in the hidden layer, and a single neuron in the output layer representing an
    • Download: (3.898Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of MLP-ANN Training Algorithms for Modeling Soil Pore-Water Pressure Responses to Rainfall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63491
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorM. R. Mustafa
    contributor authorR. B. Rezaur
    contributor authorS. Saiedi
    contributor authorH. Rahardjo
    contributor authorM. H. Isa
    date accessioned2017-05-08T21:49:27Z
    date available2017-05-08T21:49:27Z
    date copyrightJanuary 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000620.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63491
    description abstractKnowledge of pore-water pressure responses to rainfall is vital in slope failure and slope hydrological studies. The performance of four artificial neural network (ANN) training algorithms was evaluated to identify the training algorithm appropriate for modeling the dynamics of soil pore-water pressure responses to rainfall patterns using multilayer perceptron (MLP) ANN. The ANN model comprised eight neurons in the input layer, four neurons in the hidden layer, and a single neuron in the output layer representing an
    publisherAmerican Society of Civil Engineers
    titleEvaluation of MLP-ANN Training Algorithms for Modeling Soil Pore-Water Pressure Responses to Rainfall
    typeJournal Paper
    journal volume18
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000599
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian