YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrologic Response of Solar Farms

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 005
    Author:
    Lauren M. Cook
    ,
    Richard H. McCuen
    DOI: 10.1061/(ASCE)HE.1943-5584.0000530
    Publisher: American Society of Civil Engineers
    Abstract: Because of the benefits of solar energy, the number of solar farms is increasing; however, their hydrologic impacts have not been studied. The goal of this study was to determine the hydrologic effects of solar farms and examine whether or not storm-water management is needed to control runoff volumes and rates. A model of a solar farm was used to simulate runoff for two conditions: the pre- and postpaneled conditions. Using sensitivity analyses, modeling showed that the solar panels themselves did not have a significant effect on the runoff volumes, peaks, or times to peak. However, if the ground cover under the panels is gravel or bare ground, owing to design decisions or lack of maintenance, the peak discharge may increase significantly with storm-water management needed. In addition, the kinetic energy of the flow that drains from the panels was found to be greater than that of the rainfall, which could cause erosion at the base of the panels. Thus, it is recommended that the grass beneath the panels be well maintained or that a buffer strip be placed after the most downgradient row of panels. This study, along with design recommendations, can be used as a guide for the future design of solar farms.
    • Download: (1.473Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrologic Response of Solar Farms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63418
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorLauren M. Cook
    contributor authorRichard H. McCuen
    date accessioned2017-05-08T21:49:17Z
    date available2017-05-08T21:49:17Z
    date copyrightMay 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000550.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63418
    description abstractBecause of the benefits of solar energy, the number of solar farms is increasing; however, their hydrologic impacts have not been studied. The goal of this study was to determine the hydrologic effects of solar farms and examine whether or not storm-water management is needed to control runoff volumes and rates. A model of a solar farm was used to simulate runoff for two conditions: the pre- and postpaneled conditions. Using sensitivity analyses, modeling showed that the solar panels themselves did not have a significant effect on the runoff volumes, peaks, or times to peak. However, if the ground cover under the panels is gravel or bare ground, owing to design decisions or lack of maintenance, the peak discharge may increase significantly with storm-water management needed. In addition, the kinetic energy of the flow that drains from the panels was found to be greater than that of the rainfall, which could cause erosion at the base of the panels. Thus, it is recommended that the grass beneath the panels be well maintained or that a buffer strip be placed after the most downgradient row of panels. This study, along with design recommendations, can be used as a guide for the future design of solar farms.
    publisherAmerican Society of Civil Engineers
    titleHydrologic Response of Solar Farms
    typeJournal Paper
    journal volume18
    journal issue5
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000530
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian