YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrodynamic Simulation in Tidal Rivers Using Fourier Series

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 011
    Author:
    Xiaoqin Zhang
    ,
    Weimin Bao
    DOI: 10.1061/(ASCE)HE.1943-5584.0000526
    Publisher: American Society of Civil Engineers
    Abstract: One-dimensional (1D) hydrodynamic models based on the Saint-Venant equations (the SVN model) have been extensively used for flow simulation in tidal rivers. In rivers with significant tidal effects, the inconsistencies between actual flow characteristics and simplifying assumptions that the Saint-Venant equations are derived based on can introduce unignorable errors into the application of the SVN model. To reduce the errors contributed by the factors the SVN model can not completely account for, such as the tidal effect, an approach of incorporating a function into the calculated velocity by the SVN model was proposed in this study. Fourier series was employed to construct the function. By combining the proposed approach with the flow continuity equation, a 1D hydrodynamic model (the FSV model) was constructed to improve the performance of the SVN model in tidal rivers. The simulation results in the tidal reaches of the Qiantang River and the Changjiang River show that the FSV model performs better than the SVN model alone. It indicates that the proposed approach is reasonable and effective to reduce the errors due to the factors the SVN model can not completely considered in applications.
    • Download: (1.159Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrodynamic Simulation in Tidal Rivers Using Fourier Series

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63414
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorXiaoqin Zhang
    contributor authorWeimin Bao
    date accessioned2017-05-08T21:49:17Z
    date available2017-05-08T21:49:17Z
    date copyrightNovember 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000546.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63414
    description abstractOne-dimensional (1D) hydrodynamic models based on the Saint-Venant equations (the SVN model) have been extensively used for flow simulation in tidal rivers. In rivers with significant tidal effects, the inconsistencies between actual flow characteristics and simplifying assumptions that the Saint-Venant equations are derived based on can introduce unignorable errors into the application of the SVN model. To reduce the errors contributed by the factors the SVN model can not completely account for, such as the tidal effect, an approach of incorporating a function into the calculated velocity by the SVN model was proposed in this study. Fourier series was employed to construct the function. By combining the proposed approach with the flow continuity equation, a 1D hydrodynamic model (the FSV model) was constructed to improve the performance of the SVN model in tidal rivers. The simulation results in the tidal reaches of the Qiantang River and the Changjiang River show that the FSV model performs better than the SVN model alone. It indicates that the proposed approach is reasonable and effective to reduce the errors due to the factors the SVN model can not completely considered in applications.
    publisherAmerican Society of Civil Engineers
    titleHydrodynamic Simulation in Tidal Rivers Using Fourier Series
    typeJournal Paper
    journal volume18
    journal issue11
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000526
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian