YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Soft Computing–Based Workable Flood Forecasting Model for Ayeyarwady River Basin of Myanmar

    Source: Journal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 007
    Author:
    Anil Kumar Kar
    ,
    Lai Lai Winn
    ,
    A. K. Lohani
    ,
    N. K. Goel
    DOI: 10.1061/(ASCE)HE.1943-5584.0000505
    Publisher: American Society of Civil Engineers
    Abstract: It is a challenging task for working hydrologists of Myanmar to get information from all gauge and discharge sites during a flood to model the forecast properly. In such a case, the concept of this work is very useful for real-time flood forecasting, particularly when data of all the gauge sites are not available regularly or timely. In that context, one has to rely on some accessible sites to get a workable forecast. Additionally, the best combination of the available data can be selected for making the flood forecast. The study is done for the establishment of a flood forecasting model with maximum efficiency using very little information. Three upstream sites named as Sagaing, Monywa, and Chauk of the Ayeyarwady river are selected as the base station and the downstream Pyay as the forecasting station in this study. The artificial neural network (ANN) multilayered feed forward (MLFF) network along with the Takagi-Sugeno (TS) fuzzy inference model are applied in this paper. The developed model is used to forecast the stage from 1 to 4 days in advance. The values of three performance evaluation criteria, namely the efficiency, the root-mean-square error (RMSE), and the coefficient of correlation, were found to be very good and consistent. The results of ANN and fuzzy models remain at par, but the fuzzy model remains somewhat better than the ANN model. It is determined that for stage forecasting at Pyay, preferably the stage at Sagaing-Monywa-Chauk, Sagaing-Monywa, or Sagaing-Chauk is necessary on a priority basis. Regarding the influence of base stations on forecasting, Chauk remains the best, followed by Sagaing and Monywa. The fuzzy model performs better than the ANN model when the case of peak modeling comes. The study provides a best combination of available data for workable flood forecasting with sufficient lead time for planning and operating relief measures.
    • Download: (163.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Soft Computing–Based Workable Flood Forecasting Model for Ayeyarwady River Basin of Myanmar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63390
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorAnil Kumar Kar
    contributor authorLai Lai Winn
    contributor authorA. K. Lohani
    contributor authorN. K. Goel
    date accessioned2017-05-08T21:49:14Z
    date available2017-05-08T21:49:14Z
    date copyrightJuly 2012
    date issued2012
    identifier other%28asce%29he%2E1943-5584%2E0000525.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63390
    description abstractIt is a challenging task for working hydrologists of Myanmar to get information from all gauge and discharge sites during a flood to model the forecast properly. In such a case, the concept of this work is very useful for real-time flood forecasting, particularly when data of all the gauge sites are not available regularly or timely. In that context, one has to rely on some accessible sites to get a workable forecast. Additionally, the best combination of the available data can be selected for making the flood forecast. The study is done for the establishment of a flood forecasting model with maximum efficiency using very little information. Three upstream sites named as Sagaing, Monywa, and Chauk of the Ayeyarwady river are selected as the base station and the downstream Pyay as the forecasting station in this study. The artificial neural network (ANN) multilayered feed forward (MLFF) network along with the Takagi-Sugeno (TS) fuzzy inference model are applied in this paper. The developed model is used to forecast the stage from 1 to 4 days in advance. The values of three performance evaluation criteria, namely the efficiency, the root-mean-square error (RMSE), and the coefficient of correlation, were found to be very good and consistent. The results of ANN and fuzzy models remain at par, but the fuzzy model remains somewhat better than the ANN model. It is determined that for stage forecasting at Pyay, preferably the stage at Sagaing-Monywa-Chauk, Sagaing-Monywa, or Sagaing-Chauk is necessary on a priority basis. Regarding the influence of base stations on forecasting, Chauk remains the best, followed by Sagaing and Monywa. The fuzzy model performs better than the ANN model when the case of peak modeling comes. The study provides a best combination of available data for workable flood forecasting with sufficient lead time for planning and operating relief measures.
    publisherAmerican Society of Civil Engineers
    titleSoft Computing–Based Workable Flood Forecasting Model for Ayeyarwady River Basin of Myanmar
    typeJournal Paper
    journal volume17
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000505
    treeJournal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian