YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulating Groundwater Inflow in the Underground Tunnel with a Coupled Fracture-Matrix Model

    Source: Journal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 011
    Author:
    Yong Huang
    ,
    Zhongbo Yu
    ,
    Zhifang Zhou
    DOI: 10.1061/(ASCE)HE.1943-5584.0000455
    Publisher: American Society of Civil Engineers
    Abstract: Groundwater inflow during tunnel excavation is a common problem in practice. How to accurately predict its occurrence during the construction is still a challenging problem for tunnel designers. A numerical method, based on the coupled model involved in artery fractures described by a discrete fractured network model and ramification fractures and rock matrix described by the equivalent continuum medium model, is developed to calculate the groundwater inflow of underground tunnel. The model is calibrated with the observed groundwater levels in the study domain. The results in the model calibration show that calculated and measured groundwater inflows agree well. Sensitivity analysis indicates that groundwater inflow increases with the increase of precipitation rate, hydraulic conductivity of rock matrix and fracture aperture. The effect of fracture aperture on groundwater inflow is predominant, owing to the occurring of many artery fractures around the tunnel, which leads to much groundwater flowing to the tunnel through these fractures.
    • Download: (1.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulating Groundwater Inflow in the Underground Tunnel with a Coupled Fracture-Matrix Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63337
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorYong Huang
    contributor authorZhongbo Yu
    contributor authorZhifang Zhou
    date accessioned2017-05-08T21:49:09Z
    date available2017-05-08T21:49:09Z
    date copyrightNovember 2013
    date issued2013
    identifier other%28asce%29he%2E1943-5584%2E0000475.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63337
    description abstractGroundwater inflow during tunnel excavation is a common problem in practice. How to accurately predict its occurrence during the construction is still a challenging problem for tunnel designers. A numerical method, based on the coupled model involved in artery fractures described by a discrete fractured network model and ramification fractures and rock matrix described by the equivalent continuum medium model, is developed to calculate the groundwater inflow of underground tunnel. The model is calibrated with the observed groundwater levels in the study domain. The results in the model calibration show that calculated and measured groundwater inflows agree well. Sensitivity analysis indicates that groundwater inflow increases with the increase of precipitation rate, hydraulic conductivity of rock matrix and fracture aperture. The effect of fracture aperture on groundwater inflow is predominant, owing to the occurring of many artery fractures around the tunnel, which leads to much groundwater flowing to the tunnel through these fractures.
    publisherAmerican Society of Civil Engineers
    titleSimulating Groundwater Inflow in the Underground Tunnel with a Coupled Fracture-Matrix Model
    typeJournal Paper
    journal volume18
    journal issue11
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000455
    treeJournal of Hydrologic Engineering:;2013:;Volume ( 018 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian